
The Heisenberg Uncertainty Principle

The Hand-Waving Version
In a typical modern physics course you would just learn that Δx ·Δ p ≥ ℏ/2. In words, you would say 
that “on the quantum scale, position and momentum cannot be simultaneously determined,” and 
that “Δx represents the uncertainty in position and Δ p represents the uncertainty in momentum.” 
That would be the end of the statement of the Heisenberg Uncertainty Principle.

The Heisenberg Uncertainty Principle in Everyday Life
Compared to the uncertainties we encounter in everyday life, ℏ is such a tiny amount of angular 
momentum — ℏ = 6.626 x10-34 kg ·m2 s — that you never notice that position and momentum cannot 

be simultaneously determined. 

For example, if you measure the Δx of a particle to one nanometer, and the Δ p to 10-9 kg ·m /s — good 
luck being that accurate with either quantity, let alone both — then the product of those two uncertain-
ties is 10-18 kg ·m2 s. You would still have almost a 1016 increase in accuracy to play around with 

before you hit the fundamental limits of quantum mechanics!

Rigorously Defining Uncertainty in x
The problem with the hand-waving version is that uncertainty in position and uncertainty in momen-
tum have not been rigorously defined. You went a long way toward defining these in Problem Set 10, 
but I made a few simplifying assumptions. Now we are going to do the complete version, starting with 
the uncertainty in x.

Given a normalized wave function ψ(x), we define:

xn = ∫-∞
∞ ψ*(x) xnψ(x) d x = ∫-∞

∞ xn ψ(x)2 d x

Physicists often write this as 〈ψ xn ψ〉 or just  〈xn〉 and read it as “the expectation value of xn.”

As a special case:

x = ∫-∞
∞ ψ*(x) x ψ(x) d x = ∫-∞

∞ x ψ(x)2 d x

As another special case (zero powers of x):

b = ∫-∞
∞ ψ*(x)bψ(x) d x = b ∫-∞

∞ ψ(x)2 d x = b ·1 = b

is true for any number, b, as a consequence of normalization. And as a consequence of this,

x = x

because x is a number.

To finish the job define

(Δx)2 ≡ (x - x)2

or if you prefer

Δ x ≡ (x - x)2
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Rigorously Defining Uncertainty in p
This is going to proceed quite analogously to the uncertainty in x. Given a normalized wave function 
ψ(x), we define:

pn = ∫-∞
∞ ψ*(x)  ℏ

i
∂
∂x
nψ(x) d x

Physicists often write this as 〈ψ pn ψ〉 or just  〈pn〉 and read it as “the expectation value of pn.”

As a special case:

p = ∫-∞
∞ ψ*(x) ℏ

i
∂
∂x

ψ(x) d x

As another special case (zero powers of p):

b = ∫-∞
∞ ψ*(x)bψ(x) d x = b ∫-∞

∞ ψ(x)2 d x = b ·1 = b

and as a consequence of this,

p = p

because p is a number.

To finish the job define

(Δ p)2 ≡ (p - p)2

or if you prefer

Δ p ≡ (p - p)2

2     HeisenbergUncertaintyPrinciple.nb



This is going to proceed quite analogously to the uncertainty in x. Given a normalized wave function 
ψ(x), we define:

pn = ∫-∞
∞ ψ*(x)  ℏ

i
∂
∂x
nψ(x) d x

Physicists often write this as 〈ψ pn ψ〉 or just  〈pn〉 and read it as “the expectation value of pn.”

As a special case:

p = ∫-∞
∞ ψ*(x) ℏ

i
∂
∂x

ψ(x) d x

As another special case (zero powers of p):

b = ∫-∞
∞ ψ*(x)bψ(x) d x = b ∫-∞

∞ ψ(x)2 d x = b ·1 = b

and as a consequence of this,

p = p

because p is a number.

To finish the job define

(Δ p)2 ≡ (p - p)2

or if you prefer

Δ p ≡ (p - p)2

A Restatement of Δ x and Δ p
You will often see this restatement of the definition of (Δx)2:

(Δx)2 ≡ x2 - x2

I am not a fan, because it isn’t as obvious what is happening, and furthermore, it is numerically unsta-

ble if you ask a computer to use this version, but it follows trivially from (Δx)2 = (x - x)2. The proof is:

(x - x)2 = x2 - 2 x x + x2 = x2 - 2 x x + x2 = x2 - x2

 and there are times when one or the other version is the more convenient one.

As a special case, if x is zero, then

(Δx)2 = x2

Similarly you will often see

(Δ p)2 ≡ p2 - p2

and that follows with the same trivial and yet somehow deep proof from  (Δ p)2 = (p - p)2.

As a special case, if p is zero, then

(Δ p)2 = p2

In Problem Set 10, we were using those special cases some of the time. Now you are liberated by 
having the full, rigorous definitions!!

Precisely Stating the Principle
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Precisely Stating the Principle
Finally we can precisely state the Heisenberg Uncertainty Principle, and the statement is, exactly as in 
the naive statement,

Δx ·Δ p ≥ ℏ/2

but now you know what the quantities precisely mean.

An Important Example
The “Gaussian” is the most important example of the Heisenberg Uncertainty Principle. (I think) that it 
can be proved as the only function for which equality holds:

Δx ·Δ p = ℏ/2.

Ask Ryan. He deals with proofs involving Fourier transforms all the time. Heck, I ought to be able to 
prove it too, but I don’t want to get more sidetracked than I already am as part of this class and 
handout.

Here is what I mean by a “Gaussian” in this context:

ψ(x) =N ei p0 x / ℏ e-(x-x0)22a2

In most contexts, people mean that a “Gaussian” is the absolute square of this,

ψ(x)2 =N2 e-(x-x0)2a2

and even more commonly, x0 is taken to be zero, leaving just:

ψ(x)2 =N2 e-x
2a2

In Problem Set 10, you often used that normalization requires

N2 = 1
π a

and so the very simplest form of the Gaussian is

ψ(x)2 = 1
π a

e-x
2a2
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Contact with Statistics
In a statistics course, you will see the Gaussian defined as,

g(x) = 1
2 π σ

e-(x-μ)
22 σ2

they call this “the normal distribution,” and μ is the “mean,” and σ is the “standard deviation,” or σ2 is 
the “variance.”

Other than the replacements x0 →μ and a2 → 2σ2 this is the same function as we are working with.

We aren’t statisticians, and we won’t use their notation or results. However, it would not be fair to 
those of you who have had AP Statistics to skip over this bit of contact. With the statisticians’ notation, 
if x is σ away from μ (e.g., x = μ - σ or x = μ + σ), then

g(x) = 1
2 π σ

e-σ
22 σ2

= 1
2 π σ

e-1/2

We can have Mathematica plot an example with a mean of 5 and a standard deviation of 2,

In[24]:= μ = 5; σ = 2;

Plot
1

2 π σ
Exp-(x - μ)2  2 σ2,

{x, μ - 5 σ, μ + 5 σ}, PlotRange → {{μ - 5 σ, μ + 5 σ}, {0, 0.2}}

Out[24]=

-5 0 5 10 15
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0.10

0.15

0.20
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Let’s zoom in on the range from just μ - σ to μ + σ

μ = 5; σ = 2;

Plot
1

2 π σ
Exp-(x - μ)2  2 σ2,

{x, μ - σ, μ + σ}, PlotRange → {{μ - σ, μ + σ}, {0, 0.2}}

Out[14]=

3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

We can have Mathematica integrate this function over this range,

In[16]:= μ = 5; σ = 2; NIntegrate
1

2 π σ
Exp-(x - μ)2  2 σ2, {x, μ - σ, μ + σ}

Out[16]=

0.682689

This is the famous result that in a normal distribution 68% of the samples lie within ±1σ of the mean, 
μ.

Let’s have Mathematica integrate from  x = μ - 2σ to x = μ + 2σ,

In[18]:= μ = 5; σ = 2; NIntegrate
1

2 π σ
Exp-(x - μ)2  2 σ2, {x, μ - 2 σ, μ + 2 σ}

Out[18]=

0.9545

95.5% of the samples lie within ±2σ of the mean! Another famous result.

Let’s have Mathematica integrate from  x = μ - 3σ to x = μ + 3σ,

In[20]:= μ = 5; σ = 2; NIntegrate
1

2 π σ
Exp-(x - μ)2  2 σ2, {x, μ - 3 σ, μ + 3 σ}

Out[20]=

0.9973

99.7% of the samples lie within ±3σ of the mean. Of course, all these famous results presume that the 
samples are normally distributed, and only in idealized situations is this actually true.
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Returning to The Important Example
Please ignore the technicalities of the previous section if you have never taken AP statistics.  Before 
we got sidetracked making contact with statistics, we were considering:

ψ(x) =N ei p0 x / ℏ e-(x-x0)22a2

We need to compute x, x2, p, p2. Two of these are easy:

x = x0

and

p = p0

So this example that I have been claiming is important has the very simple interpretation that the 
expectation value of x is x0 and the expectation value of p is p0.

Continuing on with the quantities we are going to need to know to compute Δx ·Δ p is one that you 
pretty much did on the homework:

x2 = x0
2 + 1

2
a2

I’ll just do the last of the four quantities, because it is the messiest. I’ll start with the form you get after 
parts integration:

 p2 = ℏ2 ∫-∞
∞ N2  ∂

∂x
e-i p0 x / ℏ -(x-x0)22a2

  ∂
∂x
ei p0 x / ℏ -(x-x0)22a2

 d x

= ℏ2 ∫-∞
∞ N2  -ip0

ℏ
- (x-x0)

a2  e-i p0 x / ℏ -(x-x0)22a2
 ip0

ℏ
- (x-x0)

a2  ei p0 x / ℏ -(x-x0)22a2
d x

= ℏ2

a4 ∫-∞
∞ N2  -ip0 a

2

ℏ
- (x - x0) 

ip0 a
2

ℏ
- (x - x0) e -(x-x0)2a2

d x

= ℏ2

a4 ∫-∞
∞ N2  p0

2 a4

ℏ2 + (x - x0)2 e -(x-x0)2a2
d x

= ℏ2

a4 ∫-∞
∞ N2  p0

2 a4

ℏ2 + (x - x0)2 e -(x-x0)2a2
d x

= ℏ2

a4
p0

2 a4

ℏ2 + ℏ2

a4
1
2
a2

= p0
2 + 1

2
ℏ2

a2
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Summarizing the Important Example
We are finally in a position to summarize our calculation of Δx ·Δ p for ψ(x) =N ei p0 x / ℏ e-(x-x0)22a2

. 

Putting our  x, x2, p, p2 values into the definitions of Δx and Δ p, we discover that this function satu-
rates the inequality in the Heisenberg Uncertainty Principle:

Δx ·Δ p = x2 - x2 p2 - p2 = x2 - x0
2 p2 - p0

2 = 1
2
a2 1

2
ℏ2

a2 = ℏ
2

I am claiming that this function is important for three reasons:

(1) It represents a particle that is expected to have its position be near x0. To state it statistically, it 
has a 68% chance of being within a

2
 of x0. To state it in the way of the Heisenberg Uncertainty Princi-

ple, Δ x = a
2

.

(2) It represents a particle that is expected have its momentum be near p0. When we calculated p2, 

we learned that Δ p = p2 - p0
2 = 1

2
ℏ2

a2 = ℏ

2 a
. I didn’t show that p was normally distributed, but it is 

plausible, and if so, then it has a 68% chance of being within ℏ

2 a
 of p0.

(3) The product of the uncertainty in x and the uncertainty in p is ℏ/2 and I am claiming that no 
other function does better or even as well in saturating the inequality in the Heisenberg Uncer-
tainty Principle. The more you decrease a and improve the certainty of x, the more you increase the 
uncertainty in p. Equivalently, the more you increase a and improve the certainty of p, the more you 
increase the uncertainty in x.

I guess I could give two more reasons the example is important:

(4) This type of function shows up in ordinary, classical statistics.

(5) This type of function is easy to work with because it is the exponential of a quadratic. Ok, it is 
annoying that it is a complex quadratic, 

ψ(x) ∝ ei p0 x / ℏ-(x-x0)22a2

but it was easy to take derivatives of and complex conjugate this function thanks to the simple proper-
ties of exponentials, and the easy complex conjugation of complex numbers in polar form.
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