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The purpose of this experiment is to perform a version of one of the most important experiments in
the development of quantum physics, and to derive from the results information about the quantum
properties of angular momentum, the magnetic moment of potassium atoms, and the Maxwell-
Boltzmann distribution.

1. PREPARATORY QUESTIONS

1. Sketch the expected plot of beam intensity ver-
sus lateral deflection in a Stern-Gerlach experiment
with a beam of atoms in a state with j = 1. The
same for the case of j = 3

2 .

2. Make an energy level chart of the magnetic sub-
states of the electronic ground state of the potas-
sium atom in a weak magnetic field and in a strong
magnetic field. Take into account the effects of the
electronic and nuclear magnetic moments. In the
light of this chart predict how many intensity peaks
you will see in this experiment and explain your
prediction.

3. What would be the result of passing one of the de-
flected beams from this experiment through a sec-
ond inhomogeneous field that is identical to the first
except for being rotated 90◦ around the axis?

4. How is the intensity of atoms with velocity between
v and dv in the beam related to the density of atoms
with velocity between v and dv in the oven?

5. Derive equation (8) from the preceding results.

6. Derive equation (A6) from (A4) and (A5) in Ap-
pendix I.

WHAT YOU WILL MEASURE

1. The angular momentum quantum number of the
ground state electronic configuration of potassium
atoms.

2. The magnetic moment of the potassium atom.

3. The temperature inside the oven from which the
atomic beam emerges into vacuum.

2. INTRODUCTION

The following sketch of the history of the Stern-Gerlach
experiment is based on the much more complete account
by B. Friedrich & D. Herschbach in Daedalus, 127/1, 165
(1998).

The discovery of the Zeeman effect (1896) and its
theoretical interpretation demonstrated that atoms have
magnetic dipole moments. However, no constraint was

placed on the orientation of the moments by the ”classi-
cal” explanation of the normal Zeeman effect, in which
the spectral lines of some elements in a magnetic field
are split into three components. Bohr’s theory (1913) of
the hydrogen atom assumed circular orbits and required
the quantization of angular momentum and, by implica-
tion, quantization of the associated magnetic moment.
Sommerfeld (1916) generalized the Bohr theory to allow
elliptical orbits described by three quantum numbers: n,
k, and m. The number n = 1, 2, 3..., called the principal
quantum number, corresponded to the quantum number
of of the Bohr theory. The number k = 1, 2, 3..n de-
fined the shape of the orbit which was circular for k = n.
The number m = −k,−k + 1, ..., k − 1,+k,m 6= 0, de-
termined the projection of the vector angular momen-
tum on any prescribed axis, a consequence of the theory
that was called space quantization. Sommerfeld showed
that his theory could account for the fine structure of
the hydrogen atom (now expained in terms of spin-orbit
coupling) when relativistic effects on the motion in the
elliptical orbits were considered. The Sommerfeld theory
also provided an alternative explanation of the normal
Zeeman effect. Nevertheless, the question remained as to
whether space quantization really occurs, e. g., whether
the projections of the angular momentum and its associ-
ated magnetic moment on an axis defined by the direction
of an imposed magnetic field are quantized.

Otto Stern proposed (1921) a defintive experiment to
decide the issue. It would consist of passing a beam of
neutral silver atoms through an inhomogeneous magnetic
field and observing how the beam was deflected by the
force exerted by the field on the magnetic dipole mo-
ments of the atoms. The detector would be a glass plate
on which the silver atoms in the deflected beam would
be deposited. Since the silver atom has one valence elec-
tron, it was assumed that k = n = 1 and m = ±1 in the
ground state. If the magnetic moments were randomly
oriented, then the distribution of deflections would de-
crease monotonically on either side of zero deflection,
reflecting a random distribution of the dipole orienta-
tions. If space quantization was a reality, then the beam
should be split into two distinct beams corresponding to
the parallel and anti-parallel alignments of the magnetic
moments with respect to the direction of the inhomoge-
neous magnetic field. Stern was clumsy with his hands
and never touched the apparatus of his experiments. He
enlisted Walther Gerlach, a skilled experimentalist, to
collaborate in the experiment.
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Stern predicted that the effect would be be just barely
observable. They had difficulty in raising support in the
midst of the post war financial turmoil in Germany. The
apparatus, which required extremely precise alignment
and a high vacuum, kept breaking down. Finally, after a
year of struggle, they obtained an exposure of sufficient
length to give promise of an observable silver deposit. At
first, when they examined the glass plate they saw noth-
ing. Then, gradually, the deposit became visible, showing
a beam separation of 0.2 millimeters! Apparently, Stern
could only afford cheap cigars with a high sulfur content.
As he breathed on the glass plate, sulfur fumes converted
the invisible silver deposit into visible black silver sufide,
and the splitting of the beam was discovered.

The new quantum mechanics of Heisenberg,
Shrödinger, and Dirac (1926-1928) showed that the
orbital angular momentum of the silver atom in the
ground state is actually zero. Its magnetic moment is
associated with the intrinsic spin angular momentum
of the single valence electron the projection of which
has values of ± h̄

2 , consistent with the fact that the
silver beam is split in two. If Stern had chosen an atom
with L = 1, S = 0, then the beam would have split
into three, and the gap between the m=+1 and m=-1
beams would have been filled in, and no split would have
been visible! Vol. II, chapters 34 and 35, and Vol. III,
chapters 5 and 6 of the Feynman Lectures gives a lucid
explanation of the quantum theory of the Stern-Gerlach
experiment. Platt (1992) has given a complete analysis
of the experiment using modern quantum mechanical
techniques. Here we present an outline of the essential
ideas.

2.1. THEORY OF ATOMIC BEAM
EXPERIMENTS

Within the framework of classical mechanics one can
show that an electron in a circular orbit has an angular
momentum ~L = mωr2 and an associated magnetic mo-
ment µ = − e

2me

~L, where m and e are, respectively, the
mass and charge of the electron, and r and ω are the
radius and angular velocity of the orbital motion. In a
magnetic field ~B the atom will be acted on by a torque
µ× ~B which causes ~L to precess about the direction of ~B
with some fixed value of the projection µz = |µ|cosθ of
its magnetic moment along the direction of the field. The
atom will also have a potential energy −µ · ~B, and if the
field is inhomogeneous such that at a certain point it is in
the z direction and varies strongly with z, then the atom
will be acted on by a force Fz = −∇(−µ · ~B) = µz

∂Bz

∂z
which may have any of a continuous set of values from
−|µ|∂Bz

∂z to +|µ|∂Bz

∂z One would then expect a monoen-
ergetic beam of atoms, initially randomly oriented and
passing through an inhomogeneous magnetic field, to be
deflected in the +z and −z directions with a distribution
of deflection angles that has a maximum value at zero de-
flection and decreases monotonically in either direction.

This is not what is observed. Instead, an atomic beam,
passing through such a field, is generally split into several
distinct beams, implying that the sideways force deflect-
ing the beam is restricted to certain discrete values.

According to quantum mechanics, an atom can exist
in a steady state (i.e. an eigenstate of the Hamiltonian)
with a definite value of the square of the magnitude of its
total angular momentum, ~F · ~F and a definite component
Fz of its angular momentum in any particular direction
such as that of the z axis. Moreover, these quantities can
have only the discrete values specified by the equations

~F · ~F = f(f + 1)h̄2 (1)

and

Fz = mf h̄ (2)

where f , the angular momentum quantum number, is
an integer or half integer, mf , the magnetic quantum
number, can have only the values −f,−(f −1), ...,+(f −
1), f ,h̄ = h

2π . The magnetic moment associated with the
angular momentum is:

µ = −g e
2mec

~F where g , called the g-factor, is a quan-
tity of the order of unity and characteristic of the atomic
state. The projection of µ on the z axis can have only one
or another of a discrete set of values µz = gfmfµB where
µB = eh̄

2mec (= 0.92731x10−20) erg/gauss is the Bohr mag-
neton. In the presence of an inhomogeneous magnetic
field in the z direction the atoms will be acted on by a
force which can have only one or another of a discrete
set of values mfgfµB

∂Bz

∂z . When a monoenergetic beam
of such atoms, distributed at random among states with
2f + 1 possible values of mf , passes through an inho-
mogeneous magnetic field, it is split into 2f + 1 beams
which are deflected into ±z directions with deflection an-
gles corresponding to the various possible discrete values
of the force. Thus, if a beam of atoms of some particu-
lar species were observed to be split into, say, 4 beams
in a Stern-Gerlach experiment, then one could conclude
that the angular momentum quantum number associated
with the magnetic moment responsible for the deflection
is 4−1

2 = 3
2 .

Turning now to the present experiment in which a
beam of potassium atoms passes through an inhomo-
geneous field, we note first that the total angular mo-
mentum is the sum of the spin and orbital momenta of
the electrons and nucleons. The electronic ground state
of potassium is designated as 2S1/2, which means that
the total orbital angular momentum of the electrons, L,
is equal to 0 (i.e. the atom is in an S-state), the fine-
structure multiplicity of higher states (i.e. those with
non-zero orbital angular momentum) due to spin-orbit
interactions is 2 (one unpaired electron with spin 1/2),
and the total angular momentum ~J = ~L + ~S = h̄

2 .The
magnetic moment associated with the spin of the electron
is − gsµB

~S
h̄ where ~S is the spin angular momentum, and

gs = 2.002319304 is the gyromagnetic ratio of the elec-
tron. The nuclear angular momentum (total spin and or-
bital momenta of the nucleons lumped into what is called
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nuclear ”spin”) of 39K (the most abundant isotope of
potassium) is ~I = 3

2 h̄ , and the nuclear magnetic moment

is gnµB
~I

h̄ , where gn is much smaller than the me

mp
≈ 1

1836 .
In field free space the interaction between the magnetic
moments associated with the total electronic angular mo-
mentum ~J = ~L + ~S and nuclear angular momentum ~I
causes them to precess with a frequency of the order of
100 MHz around their sum ~F = ~J + ~I which is the total
angular momentum of the atom. According to the rules
for combining angular momenta the quantum number of
the sum, is f = i ± j = 1or2. With each combination
there is associated a magnetic moment whose value can
be calculated by matrix mechanics or, more simply, by
the ”vector” model, as explained in Melissinos and other
texts.

Potassium atoms emerging into a field-free region from
an oven at a temperature of ≈ 200◦ will be

1. almost exclusively in the ground electronic state,

2. nearly equally distributed among the two hyperfine
states with f = 1 and f = 2,

3. very nearly equally distributed among the degener-
ate ”magnetic” substates of each of the hyperfine
states, i.e. the states with the same f but different
mf , where the latter is the quantum number of
the component of total angular momentum in the
direction of the field.

A beam of such atoms passing through a weak inhomo-
geneous field would be split into as many beams as there
are magnetic substates with different components of mag-
netic moment in the direction of the field. By ”weak
field” we mean an external field in which the torques ex-
erted by the field on the magnetic moments associated
with either ~I and ~J are small compared to the torque
on each that results from the mutual interaction of their
magnetic moments. In a

strong inhomogeneous field the ~I and ~J are ”decou-
pled”, and both precess independently about the external
field direction. The magnetic moment of the potassium
atom is then dominated by the magnetic moment associ-
ated with the decoupled ~J = ~S whose projection on the
direction of the external field can have only the values
µz = ± gsµB

2 . The beam is thus split into two groups of
components, with each group having a ”hyperfine” split-
ting, due to the nuclear spin, which can only be resolved
by very refined atomic beam techniques.

2.1.1. DEFLECTIONS OF ATOMS IN A BEAM BY A
NON-UNIFORM MAGNETIC FIELD

Figure 1 shows the apparatus used in this experiment.
The central axis of the beam is taken as the y axis, and
the ~B direction as the z axis. The detector is a hot,
straight platinum wire extending a short distance in the

K-Oven

Magnet
hot wire

d2 d1

Last Slit

d1 = (10.80 +- 0.01) cm
d2 = (40.0 +- 1.0) cm

beam

Heated Slits

z

y x

FIG. 1: Schematic diagram of the apparatus looking down
from above. Note that the indicated coordinate system is not
the same as that used in the discussion in Appendix I.

±x direction about x = 0, z = 0. The beam, defined by
a pair of parallel slits, also extends a few mm in the ±x
direction.

To calculate the deflection of an atom of mass M and
velocity V we assume that the deflecting force is constant
in the region between the pole pieces traversed by the
beam, and zero elsewhere. Calling z the deflection of
an atom at the x − z plane of the detector due to the
force exerted during its passage between the pole pieces,
we have as the solution for Newton’s Second Law with
constant acceleration the expression

z =
1
2
Vzt1 + Vzt2 (3)

where Vz = Fz

M t1, t1 = d1
Vy

, andt2 = d2
Vy

. The distances
d1 and D2 are, respectively, the length of the path be-
tween the magnets and the distance from the edge of the
magnet to the hot wire detector, as shown on Figure 1. It
turns out that the deflection angle of the beam is so small
that we can approximate Vy by |~V | ≡ V to great accu-
racy and can neglect various small corrections caused by
the deflection. The expression for the deflection can then
be written

z = Fz

[
d1(d2 + d1

2 )
MV 2

]
(4)

Note that M is the mass of the atom; the force involves
the mass of the electron only through µB .

2.1.2. Distribution of Velocities

Next we describe the distribution in velocity of the par-
ticles in the beam. According to the Maxwell-Boltzmann
distribution, the fraction of atoms with velocity V in dV
inside the oven is

f(V )dV =
4√
π

(
V

V0

)2

e−( V
V0

)2d

(
V

V0

)
(5)

where V0 =
√

2kT
M is the most probable speed of an atom

inside the oven, as one can check by differentiating f(V )
with respect to V and setting the result equal to zero.
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The flux of atoms emerging through the oven slit with
velocity V in dV is proportional to the product of the
density inside the oven by the velocity with which they
emerge. Thus the fraction of atoms with normalized ve-
locities between V

V0
and V

V0
+d( V

V0
) that arrive at a target

in a given time interval is

I

(
V

V0

)(
V

V0

)
= 2

(
V

V0

)3

e−( V
V0

)2d

(
V

V0

)
(6)

where the factor 2 has been chosen so that∫ ∞

0

I

(
V

V0

)
d

(
V

V0

)
= 1 (7)

The distribution in velocity is mapped by the magnetic
deflection into a distribution in deflection, which we now
calculate for the quantum (true) case of a deflecting force
with only two discrete values, and for the classical (false)
case of a continuous range of deflecting force.

2.1.3. Distribution of Deflections for a Quantized
Deflecting Force

We consider atoms which have been acted on by a par-
ticular force and call I(z)dz the fraction which suffer a
deflection between z and z+dz. To obtain the relation be-
tween the differentials of velocity and deflection we take
the log of both sides of equation (2) and differentiate:

dz
z = −2dV

V Setting I(z)dz = −I( V
V0

)d( V
V0

)
and carrying out the algebraic manipulations, we find

I(z)dz = I0

(
z

|z|

)3

e−
z

|z| d

(
z

z0

)
(8)

where z0 is defined as the deflection of an atom with
velocity V0. This function is zero at z = 0 and has max-
ima at z = ± z0

3 .
In the real world of quantum mechanics (and neglect-

ing the unresolvable effects of the nuclear magnetic mo-
ment), the z component of force on a potassium atom
passing through the apparatus is restricted to the values
given by the expression

z0 = ±1
2
gsµB

∂B

∂z

(
d1(d2 + d1

2 )
MV 2

0

)
(9)

Thus the beam is split in two, with half the atoms
deflected toward +z and half toward −z . The deflec-
tion distribution of each half is described by equation (8)
except for a factor of 1

2 required to normalize the distri-
bution to the total number of atoms. In the actual ex-
periment we will not be concerned with the absolute nor-
malization of the deflection distribution, but only with its
shape which yields measures of the source temperature
(as reflected in the velocity distribution of the atoms), the
multiplicity of magnetic substates, and the magnitude of
the magnetic moment of the potassium atom.

FIG. 2: Stereoscopic diagram of the geometry involved in cal-
culating the distribution of directions of randomly oriented
magnetic moments and the corresponding deflection distri-
bution. The area of the shaded portion on the unit sphere
is 2πsinθdθ which amounts to a fraction, dcosθ

2
, of the entire

sphere. (Stare at the diagram with your eyes relaxed until the
central one of the multiple images fuses into a 3-D perception.

2.1.4. DEFLECTION DISTRIBUTION FOR
RANDOMLY ORIENTED MAGNETIC MOMENTS

To illustrate the difference between the classical and
quantum predictions for the deflection distribution, we
consider a beam of ”classical” atoms with magnetic
dipoles distributed uniformly in direction, each dipole
making a certain angle θ with the z axis and having a
projection of its magnetic moment in the z direction of
µBcosθ , as illustrated in Figure 2. The fraction with
polar angles between θ and θ + dθ is 2πsinθdθ

4π = −dcosθ
2 ,

and this fraction will have a deflection distribution given
by equation (8) with z0 replaced by z0cosθ. The fraction
of all atoms that suffer deflections with z in dz is then
expressed by the integral

I(z)dz = − dz

2z0

∫ π
2

0

(
z0cosθ

z

)2

e−(
z0cosθ

z )d

(
z0cosθ

z

)
(10)

I(z)dz = +
dz

2z0

∫ z0
z

0

u2e−udu (11)

Integrating by parts, we obtain

I(z) ∝ 1−
[
1 +

z0

z
+

1
2

(
z

z0

)2]
e

z0
z dz (12)

The deflection distributions from the classical theory
and for the quantum theory with j = 1

2 are plotted in
Figure 3 for the case of ideal narrow beams, i.e. atomic
beams with negligible initial width and angular diver-
gence.
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FIG. 3: Predicted deflection distributions for a beam of ”clas-
sical” atoms (no space quantization), and for a beam of real
atoms with j = 1

2
.

2.1.5. Beam Width Contribution to the Deflection
Distribution

In the above calculation we neglected the width and
angular divergence of the beam. In our apparatus the
deflection is not much greater than the width of the un-
deflected beam in the plane of the detector. Thus the
measured current at z is a sum of contributions by atoms
that have suffered deflections in a range comparable to
the width of the beam. We call g(u − z)dz the fraction
of atoms which have been deflected by an amount u that
arrive at positions in the range from z to z + dz. We
recall that I(u)du is the fraction of atoms that suffer de-
flections in the range from u to u+du. The fraction of
atoms that arrive at positions between z and z + dz per
unit interval of z is expressed by the convolution integral

I ′(z) =
∫ +∞

u=−∞
I(u)g(z − u)du (13)

This simple result is based on the assumption that var-
ious parts of the beam do not influence each other by
collisions, and that g(ξ) is independent of z, i.e. that the
profile of a beam of particles with a given deflection does
not depend on the deflection.In Figure 4 we show the
results of convolving the distribution function of equa-
tion (8 with a beam profile in the form of the Gaussian
error function

g(ξ) =
1

σ
√

2π
e−

ξ2
i

2σ2 (14)

One can compare the plot of data from a measurement
with the theoretical curves of Figure 4 and thus estimate
what value of the width parameter should be used to
generate a fitting curve from the theoretical curve for a
line source. Then by comparison, one can determine how
much zmax is shifted relative to z, i.e. 1

3z0 = zidealmax =
(?)zobservedmax

In your analysis you can use the observed zero-field
current distribution to estimate the beam profile func-
tion g(x). In principle, you should then be able to fit the

FIG. 4: Calculated deflection distributions for a beam of
atoms with j = 1

2
, convolved with Gaussian beam-spread

functions with various values of σ.

convolved function I ′(z) to the observed current distribu-
tion with the magnetic field turned on by adjustment of
the parameters I0 and z0. There is a LabVIEW program
called ”Fit Stern Gerlach Profile” available on the Junior
Lab Server PC with which you can accomplish such a fit
automatically. It is designed to fit a function consisting of
equation (8) convolved with a Gaussian resolution func-
tion to your data set by the method of iterated linearized
least squares described by Bevington (1969).

3. APPARATUS

The four basic parts of the equipment are:

1. Vacuum System: A high vacuum is needed to
eliminate collisions between the beam atoms and
the resident gas, and to allow the hot wire detector
to work properly. A turbomolecular pump, backed
by a mechanical forepump, produces a pressure of
< 10−6 torr.

2. Oven: The oven, located at the far end of the
apparatus, contains a slug of potassium which is
gradually vaporized by the heat. The atoms of the
potassium vapor shoot out through a hole in the
oven and a tiny fraction of these pass through the
slits to form a narrow atomic beam that traverses
the inhomogeneous magnetic field between the spe-
cially shaped poles of the magnet. For a good
beam, the mean free path in the oven should be
large compared to the slit width which requires an
operating range for temperature from roughly 180◦
to 250◦C. The temperature is monitored with an
iron-constantan thermocouple and a digital ther-
mometer. Since the beam flux is proportional to
the vapor pressure of potassium in the oven and
the vapor pressure is a very steep function of tem-
perature, you should be sure that the temperature
has stabilized before taking data.

CAUTION... K + moistair = KOH + K2CO3 ·
2H2O+ .... DO NOT TURN OFF THE VAC-
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UUM PUMPS. In case of a power failure an in-
ert gas (either Ar or N2) will automatically flood
the system through electromagnetically controlled
valves. This prevents the oxidation and hydrolysis
of the potassium.

3. Electromagnet: The electromagnet consists of
two coaxial iron cores wound in series on a C-yoke,
with iron pole pieces shaped to give a region of very
non-uniform magnetic field. There is nevertheless
an approximately constant value of the field gra-
dient ∂Bz

∂z in the gap between the pole pieces. A
schematic of the magnet cross-section is shown in
the Appendix as Figure 5 The atomic beam passes
along the y axis (see Figure 1) and is centered ver-
tically at x = 0. The field gradient, which is what
concerns us here, is not observed directly, but is cal-
culated in terms of ~B itself. The field strength has
been measured previously as a function of magnet
current; the results are summarized in Figure 6 of
Appendix I. Given a value of the magnet current,
you can use Figure 6 to find the corresponding value
of ~B from which you can calculate ∂Bz

∂z as explained
in Appendix I.

The magnet current is furnished by a regulated
power supply, and is controlled by a rheostat. The
current is read coarsely by a panel meter on the
supply and accurately on a large Weston ammeter
connected in series with the magnet coils. The pro-
cedure for setting the magnetic field is as follows:
for measurements of the undeflected beam shape,
”degauss” the magnet by bringing the current to
+5 amps, then to +5 amps, and then to -0.65 amps.
Then turn the current off; the field should now be
lass than about 20 gauss, not enough to be trouble-
some. In setting any other magnetic field, run the
magnet up to 5 amps and back down, first in one
direction and then the other, three or four times be-
fore approaching your final current value. This will
place you securely on the hysteresis curve plotted
in Figure 6. It is essential to follow the same pro-
cedure used when B was measured as a function
of current, which is to approach the final current
value from below (i.e., from lesser magnitude). If
you approach it from above, the magnet curve de-
pends much more sensitively on the previous peak
value of the current.

4. Detector: The detector is a 4 mil diameter plat-
inum wire, heated to about 1300◦ C, and biased
about 15 volts above ground. The potassium atoms
are detected only if they hit the wire, whereupon
they are ionized and boiled off. (For details of hot
wire detectors see Smith (1955) or Ramsey (1956)).
The ions are swept to a rectangular collector plate
on one side of the wire by the bias voltage, and the
resulting positive current goes to ground through
a shielded coaxial cable and the electrometer. The

detector is mounted on an assembly which may be
moved by a micrometer head. To figure the z dis-
placement of the detector, note that the detector
to pivot distance is 0.957 ± 0.005 times the pivot
to micrometer distance. The micrometer is swept
through its range with a reversible motor. There is
also a voltage divider attached to the motor drive
that is used to advance the x-axis signal of the dis-
play; the y-axis signal comes from the 0 − 2 volt
analog output on the back of the Keithly electrom-
eter. The heater current should be in the range
from 0.5 to 0.6 amps (0.53 amps has worked well).
Be careful not to exceed the posted maximum cur-
rent.

When you finish a session switch off the magnet
power and go to the central peak-current position
to verify that everything if working properly for the
next group. Then close the flap door between the
magnet and the detector, and turn off the electrom-
eter, the bias voltage on the hot wire, and the com-
puter. Reduce the hot wire heater current to ap-
proximately 0.2 amps and leave it on. If you are
working in the afternoon session and leave around
5:00 pm, reduce the oven heater current to approx-
imately 3.0 amps and leave it on.

4. PROCEDURE

Set the oven temperature to about 190 ± 5◦C. Turn
on the digital electrometer and set the sensitivity to 2
picoamp full scale. Turn on the power supply for the po-
sitioning motor of the movable hot wire detector. Turn
on the magnet power supply and degauss the magnet,
leaving it in a demagnetized state. Open the flap door
between the magnet and the detector section. Set the de-
tector hot wire collector bias to 15 volts and the heating
current to a value between 0.5 and 0.6 amps. (You may
find it beneficial to run the heater current at 0.8 amps
for a few minutes to clean the wire; in any case, do not
exceed 1.0 amps.) Move the detector across its position
range and observe the electrometer reading. If you have
a beam the electrometer should register a significant cur-
rent as you approach the center position of the hot wire.
If you do not find any signal, get expert help.

1. Properties of the hot wire detector. Study the be-
havior of the signal strength and the signal-to-noise
ratio as a function of the hot wire current in order
to determine the optimum current for measuring
the beam profile and deflection distribution. To
do this, first check that the oven temperature has
reached equilibrium and is steady. Then record
the undeflected beam profile (a plot of electrom-
eter current versus hot wire position) for several
hot wire currents. Analyze the profiles as you go
along, and plot both the central beam electrom-
eter current minus background and the ratios of
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central current to background current as functions
of the hot wire current. The final choice of the
operating hot wire current for the magnetic deflec-
tion measurements is a compromise. Too high a
hot wire current causes a large and unstable back-
ground electrometer current. (You can readily find
the zero reading by temporarily closing the vacuum
gate). Too low a hot-wire current causes a slow de-
tector response. You can check this by moving the
detector rapidly between on-peak and off-peak po-
sitions. The time constant of the response should
be no more than a few seconds.

Data can be recorded either directly by the PC and
fit using LabVIEW routines found on the Junior
Lab Server PC over the newtork. Be sure to cali-
brate the X-axis readings against the actual posi-
tions of the micrometer.

2. Position of the beam. The deflection of the beam
depends critically on its position in the gap of
the magnet. The position and orientation of the
beam can be adjusted by moving the oven which
is mounted on a platform that permits lateral and
angular motions. In addition, the position of the
aperture at the entrance to the magnet is controlled
by a micrometer. With so many degrees of freedom
it is easy to lose the beam and get lost in a multi-
dimensional parameter space. So any adjustment of
the positions of oven and aperture should be made
in small steps and carefully noted so that you can
return to any previous position. The following pro-
cedure is suggested as a way to find the optimum
center position for the beam, assuming that you are
starting with a significant signal (if there is no evi-
dence of a signal when you scan the detector (zero
field) across the path, call for help.):

Move the hot wire to the point of maximum signal,
and note the micrometer reading, the lateral posi-
tion of the oven (read on the digital display) and
the angular position (read on the dial gauge). Then
move the oven laterally in a small step, taking care
not to go so far as to lose the signal; move the aper-
ture and the wire to maximize the signal. Note all
the position readings. Take another lateral step,
and repeat the procedure till you reach the point
where the beam is blocked by the edge of the mag-
net. Now rotate the oven slightly one way and the
other to see if the signal is restored. If not, then
you can assume the beam is parallel to the gap. If
you do get back some signal, then move laterally
a little further, and repeat the angle motion test.
This procedure will establish the parallelism of the
beam and the position of one side of the magnet
gap. Now go to the other side in the same man-
ner. Knowing the oven positions corresponding to
the two sides of the magnet gap, you can place the
oven so the beam is in the middle of the gap. (In
all of this, take care never to completely lose the

signal so that you always have a way to crawl back
to safety from a dangerous position of a nearly lost
beam.)

3. Measurement of the angular momentum quantum
number and magnetic moment of the ground state
of the potassium atom. With the hot wire current
set at the optimum value, measure the beam profile
with zero deflecting field. Then turn on the inho-
mogeneous magnet field and measure the deflection
distribution.

5. ANALYSIS

This experiment is essentially a procedure for measur-
ing the possible values of the projection of the magnetic
moment µK of the potassium atom in its ground state.
It is remarkable that the quantity zo combines all the
experimental parameters: the dimensions of the appara-
tus, the field gradient ∂Bz

∂z , the length of the magnet, the
oven temperature, the mass of the potassium atom and
its magnetic moment. On the one hand, this allows one
to use the entire curve to extract the one unknown quan-
tity, µK = mgµB . On the other hand, it means that we
have no way of deducing errors in the other quantities
from any combination of our data.

One can express µK in terms of zo which can, in turn,
be expressed in terms of the various measured and de-
rived quantities (cf. equation (6 above). The quantity
∂Bz

∂z is evaluated according to equations A8 and A1 of
Appendix I. One can also express the probable error ∆µK

in terms of the probable errors in these parameters and
in zo. You should estimate the uncertainty in each of the
measured quantities and deduce the precision with which
zo must be determined so that it will not seriously affect
the precision of the measurement of µK .

In order to compare our expression for I ′(z) with the
observed current, we need two other quantities: the po-
sition of the undeflected beam and the area under the
current versus deflection curve. Both of these are deter-
mined from the experimental zero-field curves. The area
under the zero-field curve is A, which should remain the
same for the deflected current versus position curves pro-
vided the oven temperature and the detector sensitivity
are constant.

If time permits, determine the dependence of A on
oven temperature. Compare your result with the vapor
pressures of potassium listed in the CRC Handbook. Es-
timate the uncertainty in zo introduced by possible tem-
perature variations.

For our procedure, as outlined below, the position of
the undeflected beam can be taken as the centroid of the
zero-field curve:

z(0) =
1
A

∫
zI0(z)dz (15)
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The curve of observed current versus detector posi-
tion is the convolution of equation (8) for I ′(z) with the
zero-field curve that we can use for the beam profile g(x).
While this seems plausible, it is by no means self-evident.
For example: 1. What if the magnet is not degaussed?
How would that affect the validity of our assumption?
Can you estimate a reasonable value for this effect? 2.
Some of the broadening of the resolution curve is due
to scattering of the beam. The scattering cross section
depends upon the velocity of the atoms. Therefore the
effective width will vary with z. Can you devise a proce-
dure to investigate the contribution of beam scattering?

Note that our expression for I’(z) has no adjustable
parameters except zo. If we choose the correct value of
zo and a correct beam profile function, every point on
the curve should be predicted correctly without any area
normalization or separate determination of the zero posi-
tion. A least squares fitting of the theoretical deflection
distribution with a Gaussian convolution can be carried
out on the PC using a Non-Linear Levenberg/Marquardt
routine written in LabVIEW and downloadable from the
Junior Lab Server computer.

5.1. Questions

1. Determine the angular momentum quantum num-
ber of the ground state electronic configuration of
potassium.

2. Calculate µK for potassium, with a careful error
estimate.

3. Turn the analysis around: assume the measured
value of ~B and the accepted value of µK from the

CRC Handbook) and calculate the value of the oven
temperature. Compare with the measured temper-
ature of the oven.

4. What are the particle densities and mean free paths
in the oven and in the beam?

5. About how many cycles of precession do the atoms
undergo while passing through the magnet?

6. (Optional) Estimate the variations of Fz and of the
other, neglected components of the forces on the
magnetic dipoles in a beam of finite divergence. For
example, one component of force slows down one
half of the beam. Which component of the field
interacts this way with which half of the beam, and
how much? To do this quantitatively, you need to
generalize the equations in Appendix I to get ~B and
its derivatives off-axis.

7. Kinetic Theory and Statistical Mechanics 1. What
are the particle number densities of a) the residual
vacuum; b) the beam at various locations; and c)
the average distance between beam particles?

8. Why don’t you have to consider the wave nature
of the beam - i.e. why does geometric beam optics
work?

9. Are the deflection versus intensity plots you gen-
erate useful in measuring the Maxwellian velocity
distribution?

10. Why can you think of the iron pole faces as scalar
magnetic equipotentials?
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1. Quantization of angular momentum.

2. The Maxwell-Boltzman distribution.

3. The magnetic field of the deflecting magnet.

4. The hyperfine structure of the potassium ground
state.

APPENDIX A: APPENDIX I

Calculation of the Magnetic Field The magnetic field in
the gap between arcs of two cylindrical surfaces of infinite
permeability can be calculated exactly. It is the same as
the field from the currents in two long imaginary wires
running along two lines parallel to the intersections of the
cylindrical surfaces. In the coordinate system of Figures 1
and 5, the wires are located at x = s, z = 0, and they
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FIG. 5: Elevation view of the magnet gap looking from the de-
tector toward the oven. The beam of potassium atoms should
be thought of as coming out of the paper at approximately
the position of the letter w.

carry equal and opposite currents of a magnitude we will
call a.

The subscript 1 refers to the ”inner” radius, that of
the pole piece which has a convex surface; 2 refers to
the concave ”outer” pole piece. It turns out that one
can choose these imaginary currents so as to satisfy the
boundary conditions on the magnetic field in the gap,
namely that ~B must be perpendicular to the surfaces of
the pole pieces because µ0

µiron
≈ 0 (In this context µ0

is the the magnetic permeability of the vacuum). The
uniqueness theorem for potential functions then justifies
the calculation of the field elsewhere in the gap as the
superposition of the fields of the two wires.

The required geometric relations that must be satisfied
in the construction of the pole pieces are expressed by the
three equations:

s2 +z2
1 = R2

1, s
2 +z2

2 = R2
2, z1 +R1 +W = z2 +R2 (A1)

For ~B to be perpendicular to a surface it is necessary
and sufficient that Bx

Bz
= − ∂z

∂x along the surface, where
the right side describes the geometry of the cylindrical
surface. We will demonstrate that this condition is true
on the outer surface only, but then will see that in doing
so we have proved our case for the inner surface, too.
The equation for the outer surface is:

x2 + (z − z2)2 = R2
2 (A2)

Thus,

−
(

∂z

∂x

)
outer

=
x

z − z2
(A3)

To evaluate Bx and Bz , we add up the contributions to
each from the two wires. In mks units, the contributions
from the first wire, carrying a current a, are:

B1x =
µ0a

2π

z

(x− s)2 + z2
(A4)

and

B1z =
µ0a

2π

−(x− s)
(x− s)2 + z2

(A5)

Similar expressions give B2x and B2z, but with (x +
s) replacing (x − s), and the signs of both components
reversed. Dividing the sum of the x components by the
sum of the z components we obtain

Bx

Bz
=

2zx

z2 − x2 + s2
(A6)

Does this equal x
z−z2

? If we substitute for s2 from
s2 = R2

2 − z2
2 and for x2 on the outer surface from x2 +

(z − z2)2 = R2
2 we indeed find that this is so. Note that

R2 cancels out, so that the result is true for the inner
surface too. Next we evaluate the magnitude of ~B, but
for simplicity only on the axis. The x components cancel
out, leaving

| ~B|onaxis = Bz =
µ0a

π

s

s2 + z2
(A7)

We will use this z dependence to correct Bz as a func-
tion of z, since it was measured at the ”wrong” place.
The gradient of the z component of the field along the
axis is

∂Bz

∂z
= − 2zBz

s2 + z2
(A8)

Thus the measured B in Figure 6 should be corrected
to the right z : then you can calculate the gradient from
it. The job of finding an expression for s , and hence B
and ∂B

∂z at the center of the gap, is left to the reader,
given the input values for R1, R2, andW in Figure 5 and
the connecting equations above.
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FIG. 6: Magnetic Field Measured near the Convex Pole Face.
Center of probe was 0.010” from the convex pole piece.


