
Particle in a Potential Well

The Even Solutions we Found on Friday

We tackled the particle in a potential well, which is the particle in a box problem, except the sides of 
the box are only V0 high instead of infinitely high. We focused on the even solutions, and we didn’t 
bother normalizing them. Although we didn’t bother normalizing the solutions, we used normalizabil-
ity. We also used continuity. With those things, we found:

For - L
2
< x < L

2
, with p = ℏ k = 2m E  we found ψ(x) = cos k x.

For x > L
2

, with ℏ κ = 2m(V0 - E)  we found ψ(x) = cos k L
2
eκ L/2 e-κ x.

For x < - L
2

, we found ψ(x) = cos k L
2
e-κ L/2 eκ x.

The Final Condition, No Kinks

We demanded no kink at x = L
2

 and we found κ = k tan k L
2

. Putting in what κ and k are turned this 

into:

V0-E
E

= tan 2m E
ℏ

L
2


This equation tells us the allowed values of E! But it is a hard equation to solve.

What Now!?

The above equation is a tough one. Fundamentally, the problem is that there are three energies in the 
problem: E, V0, and the energy you can make out of the three constants ℏ , m, and L. If there were 
only two energies in the problem, then you know by dimensional analysis, that they would have to be 
proportional to each other, and there would be some constants that you can’t get from dimensional 
analysis, but which you could assume are going to be reasonable things like π2, 1 /8, ln 2, etc.

So let’s do the following. Let’s take the combination h2

8m L2 =
ℏ2 π2

2m L2  and measure all other energies in 

terms of that combination. I used that combination, because it is what showed up in the quanton-in-a-
box problem. The tough equation becomes:

V0
ℏ2 π2

2m L2 -E
ℏ2 π2

2m L2

E ℏ2 π2

2m L2

= tan
2m E ℏ2 π2

2m L2

ℏ
L
2

which simplifies to

V0 -E
E

= tan E π

2

Now V0 and E are pure (meaning dimensionless) numbers! The equation looks a lot simpler, but we 
still are not done!
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Graphical Solution, Large V0 , Even Solutions

Let’s graph this darned thing for a big value of V0. Later on we’ll graph it for a small value of V0, and if 
we haven’t learned enough then will do an intermediate value of V0. How about V0 = 100. The graph of 
the LHS is:

In[17]:= v0 = 100; Plot
v0 - energy

energy
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[17]=
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The graph of the RHS doesn’t depend on V0. It is:
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In[18]:= PlotTan
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[18]=
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It looks like we will get 5 of these even solutions!

Graphical Solution, Large V0 , Odd Solutions

If we had done the odd solutions, we would have gotten:

V0-E
E

= -cot 2m E
ℏ

L
2


The RHS is now:

In[19]:= Plot-Cot
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[19]=
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It looks like we will get 5 of these odd solutions too! So 10 solutions for V0 = 100. Interesting. Maybe 

you tend to get V0 solutions?
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Graphical Solution, Really Large V0 , Even Solutions

Let’s just test the idea that you tend to get V0 solutions. How about we do V0 = 10 000. We’d expect 

100 solutions, 50 of which will be even: 

In[21]:= v0 = 10000; Plot
v0 - energy

energy
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[21]=
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v0 = PlotTan
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[20]=
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Pretty clearly, there are 50 even solutions, and there will be 50 more odd solutions.
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Graphical Solution, Moderate V0 ,  Even and Odd Solutions

In[27]:= v0 = 9; Plot
v0 - energy

energy
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[27]=
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In[28]:= PlotTan
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[28]=
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In[29]:= Plot-Cot
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[29]=
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Now we have 2 even solutions and 1 odd solution.

Graphical Solution, Small V0 ,  Even and Odd Solutions

In[30]:= v0 = 1; Plot
v0 - energy

energy
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[30]=
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In[31]:= PlotTan
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}
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In[32]:= Plot-Cot
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}
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We have lost the odd solution, but we still have an even one.
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Graphical Solution, Tiny V0 ,  One Even Solution Remains

In[33]:= v0 = 0.09; Plot
v0 - energy

energy
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[33]=
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In[34]:= PlotTan
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[34]=
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One even solution is still with us!
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Graphical Solution, Really Tiny V0 ,  One Even Solution Still Remains

In[36]:= v0 = 0.0001; Plot
v0 - energy

energy
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[36]=
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In[37]:= PlotTan
energy Pi

2
, {energy, 0, v0}, PlotRange → {{0, v0}, {-5, 5}}

Out[37]=
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It is clear that no matter how small we make V0, there is going to be a solution with E just slightly less 
than V0.

The One Solution that Remains for Tiny V0

It is clear that the one solution that remains for tiny V0 has E just slightly less than V0. So in addition to 
making the approximation that V0 is small, we can make the approximation that 

E = V0(1 - ϵ)

with epsilon small and positive.

The three equations we want to work on in this approximation are:

V0 -E
E

= tan E π

2

Let’s find ϵ. The equation above becomes

V0 -V0(1-ϵ)
V0(1-ϵ)

= tan V0(1-ϵ) π
2

or

ϵ = tan V0 π

2
= V0 π

2
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The Wave Function for Tiny V0

It sure would be nice to look at the wave function, not just its energy. To get the above equation for 
the energy, before we even made the approximation, E = V0(1 - ϵ) we had already creatively  measured 

all energies in units of ℏ2 π2

2mL2 .

So let’s do that to the equations for k and κ too.

ℏk = 2m E ℏ2 π2

2m L2  and ℏ κ = 2mV0
ℏ2 π2

2m L2 - E
ℏ2 π2

2m L2 

These now simplify nicely to

k = E π
L

   and   κ = V0 - E π
L

Let’s be even more creative and measure all lengths in units of L. Then the equations for k and κ which 
have units of inverse length, further simplify to:

k = E π    and   κ = V0 - E π

and the wave function which is a function of x, which has dimensions of length, simplifies to

for - 1
2
< x < 1

2
, it is ψ(x) = cos k x,

for x > 1
2

, it is ψ(x) = cos k
2
eκ/2 e-κ x,

and for x < - 1
2

, it is ψ(x) = cos k
2
e-κ/2 eκx.

Using E = V0(1 - ϵ), k and κ approximate to:

k = V0(1 - ϵ) π = V0 π    and   κ = ϵ V0 π = V0 π V0 π

2
= V0

π2

2
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Let’s Graph the Wave Function for Tiny V0

In[81]:= vzero = 0.0001; κ = vzero * Pi2  2; k = Sqrt[vzero] * Pi;

ψ[x_] := If[Abs[x] > 1 / 2, Cos[k / 2] × Exp[κ / 2] × Exp[-κ Abs[x]], Cos[k x]];
plot[range_] := Plot[ψ[x], {x, -range, range}];
plot[1]

Out[83]=
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I have zoomed in on the central region to make sure that it is continuous and has no kink at x = ±L /2, 
which is x = ±1 /2 in our creative units.

Now let’s zoom out.

In[80]:= plot[10]
Out[80]=
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Zoom farther out:

In[79]:= plot[100]
Out[79]=
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Zoom much farther out:

In[78]:= plot[1000]
Out[78]=
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Zoom way the heck out:
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In[77]:= plot[10000]
Out[77]=
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Normalized Probability Distribution

If you want to normalize the wave function and then square it, it is:

vzero = 0.0001; κ = vzero * Pi2  2; k = Sqrt[vzero] * Pi;

psinormalized[x_] :=
Sqrt[κ] × If[Abs[x] > 1 / 2, Cos[k / 2] × Exp[κ / 2] × Exp[-κ Abs[x]], Cos[k x]];

plot[range_] := Plotpsinormalized[x]2,

{x, -range, range}, PlotRange → {{-range, range}, {0, 0.0005}};

plot[5000]
Out[101]=
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You can see that for V0 = 0.0001, the square of the normalized wave function is roughly the same area 
as a rectangle that is 4000 wide and 0.00025 high, so it looks like we didn’t boo-boo doing the normal-
ization. Of course the actual wave function has units of square root of inverse length so if you wanted 
to undo our creative units, you would need to multiple the wave function by 1

L
 or the probability 

density by 1
L

.
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