
Two- and Three-Dimensional Rotationally-Symmetric 
Potentials

The three-dimensional potential well is pretty hard to solve. We’ll start off with the two-dimensional 
one.

The Two-Dimensional Schrödinger Equation in Polar Coordinates

We’ll get bogged down if I try to show you the Schrödinger Equation in Polar Coordinates. I will just 
give it to you:

Enψ(r, ϕ) = - ℏ2

2m
 ∂

2ψ(r,ϕ)
∂r2 + 1

r
∂ψ(r,ϕ)

∂r
+ 1
r2

∂2ψ(r,ϕ)
∂ϕ2  + V(r, ϕ)ψ(r, ϕ)

If you want to derive this thing, you have to use multi-variable calculus rules to convert the ∂2

∂x2 + ∂2

∂y2  

that appears in Schrodinger’s equation in Cartesian coordinates into ∂2

∂r2 + 1
r

∂
∂r
+ 1
r2

∂2

∂ϕ2 . If you really 

want, here is somebody who wrote it up completely, https://www.math.ucdavis.edu/~saito/cours-
es/21C.w11/polar-lap.pdf, and below is an excerpt.

In the rest of this section, θ is the polar angle instead of ϕ, because that is typically what is named in 2-
d. But I prefer ϕ above because this is the gateway to 3-d.

So they did that much very tidy work, and they got ∂u
∂r

 in terms of derivatives with respect to x and y. If 

you want to understand what is going on rather than just manipulating symbols, you really need to 
draw pictures!!

Anyway, the next thing they do is compute ∂
2u
∂r2 , which is just repeating step 4 to get a second deriva-

tive. Then they need to do  ∂u
∂θ

. Finally they complete the second derivatives by doing ∂
2u

∂θ2 .

The next thing is to make the dimensionally-sensible combination ∂
2u
∂r2 + 1

r2
∂2u
∂θ2  and simplify. They 

discover,

∂2u
∂r2 + 1

r
∂u
∂r

+ 1
r2

∂2u
∂θ2 =

∂2u
∂x2 +

∂2u
∂y2

and that is what goes into Schrödinger’s equation.
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The Rotationally Symmetric Case and the Separation of Variables Ansatz

If the potential is rotationally symmetric it doesn’t depend on ϕ, so we 
have:

Enψ(r, ϕ) = - ℏ2

2m
 d

2 ψ (r,ϕ)
dr2 + 1

r
dψ(r,ϕ)
dr

+ 1
r2

d2 ψ (r,ϕ)
dϕ2  + V(r) ψ(r, ϕ)

The ansatz for solving this is 

ψ(r, ϕ) = ψ(r)Φ(ϕ)

where Φ(ϕ) is an unknown function of ϕ.

Enψ(r)Φ(ϕ) = - ℏ2

2m
 d

2 ψ(r)
dr2 + 1

r
dψ(r)
dr

Φ(ϕ) + 1
r2

d2 Φ(ϕ)
dϕ2 ψ(r)  + V(r) ψ(r)Φ(ϕ)

Multiply through by r2

R(r)Φ(ϕ)

r2 En = - ℏ2

2m
r2 d2R(r)

dr2 + r dR(r)
dr

 1
R(r) -

ℏ2

2m
1

Φ(ϕ)

d2 Φ(ϕ)
dϕ2 + r2 V(r)

Rearrange

r2 En +
ℏ2

2m
r2 d2R(r)

dr2 + r dR(r)
dr

 1
R(r) - r

2 V(r) = - ℏ2

2m
1

Φ(ϕ)

d2 Φ(ϕ)
dϕ2

All of the ϕ-dependence is on the RHS!! No ϕ-dependence is on the LHS. The LHS and the RHS must be 
independent of ϕ! But the RHS by the same type of argument is independent of r! So the LHS and the 
RHS must depend on neither ϕ nor r. They are some constant!

Let’s call the constant ℏ2

2m
l2. Of course, it could be a negative constant, and I am predisposing you 

against that by putting in l2 and ℏ2

2m
l2 must be greater than or equal to zero, but you’ll see that this is 

true in a moment. With this constant,

- ℏ2

2m
1

Φ(ϕ)

d2 Φ(ϕ)
dϕ2 = ℏ2

2m
l2

or

d2 Φ(ϕ)
dϕ2 = -l2 Φ(ϕ)

The Φ(ϕ) that does this is Φ(ϕ) = eilϕ. If the constant had been negative, then Φ(ϕ) would have grown 
or decayed exponentially. WHAT IS WRONG WITH THAT? Well, we can’t have discontinuity or kinks 
going from ϕ = 0 to ϕ = 2π , and the exponentials can’t satisfy that. The bottom line is that the con-
stant is indeed positive, and furthermore, to have continuity and no kinks at ϕ = 0 to ϕ = 2π , l has to 
be an integer.

Now that we know l, from solving the ϕ  equation, we put it back in to the r equation.

r2 En +
ℏ2

2m
r2 d2R(r)

dr2 + r dR(r)
dr

 1
R(r) - r

2 V(r) = - ℏ2

2m
l2

Multiplying through by R(r)
r2  we have

En R(r) +
ℏ2

2m
 d

2R(r)
dr2 + 1

r
dR(r)
dr

 - V(r) R(r) = - ℏ2

2m
l2 R(r)

r2

or

En R(r) = - ℏ2

2m
 d

2R(r)
dr2 + 1

r
dR(r)
dr

 + V(r) ψ(r) + ℏ2

2m
l2 R(r)

r2

This last equation is often a bear to solve, but the nice thing is that it looks just like a 1-d Schrodinger 
equation. There are two constants in it that change from solution to solution. They are En and l. We 
emphasize that the wave function will depend on these things by subscripting it as Rn,l(r). En might 
depend on l, so we give it a subscript too.

En,l Rn,l(r) = - ℏ2

2m
 d

2Rn,l(r)
dr2 + 1

r
dRn,l(r)
dr

 + V(r) Rn,l(r) +
ℏ2

2m
l2 Rn,l(r)

r2

The next thing that is generally done is to define a new dimensionless radial coordinate:

ρ ≡
2mEn,l

ℏ
r

Then the equation is:

En,l Rn,l(ρ) = - ℏ2

2m
2mEn,l

ℏ2  d
2Rn,l(ρ)

dρ2 + 1
ρ

dRn,l(ρ)

dρ
 + V ℏ

2mEn,l
ρ Rn,l(ρ) +

ℏ2

2m
l2 2mEn,l

ℏ2

Rn,l(ρ)

ρ2

or, dividing through by En,l

Rn,l(r) = - d
2Rn,l(ρ)

dρ2 + 1
ρ

dRn,l(ρ)

dρ
 +

V ℏ

2mEn,l
ρ Rn,l(ρ)

En,l
+ l2 Rn,l(ρ)

ρ2

or,

ρ2 - l2 Rn,l(ρ) + ρ2 d2Rn,l(ρ)

dρ2 + ρ dRn,l(ρ)

dρ
 - ρ2

V ℏ

2mEn,l
ρ Rn,l(ρ)

En,l
= 0
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ρ ≡
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En,l Rn,l(ρ) = - ℏ2

2m
2mEn,l

ℏ2  d
2Rn,l(ρ)

dρ2 + 1
ρ

dRn,l(ρ)

dρ
 + V ℏ

2mEn,l
ρ Rn,l(ρ) +

ℏ2

2m
l2 2mEn,l

ℏ2

Rn,l(ρ)

ρ2

or, dividing through by En,l

Rn,l(r) = - d
2Rn,l(ρ)

dρ2 + 1
ρ

dRn,l(ρ)

dρ
 +

V ℏ

2mEn,l
ρ Rn,l(ρ)

En,l
+ l2 Rn,l(ρ)

ρ2

or,

ρ2 - l2 Rn,l(ρ) + ρ2 d2Rn,l(ρ)

dρ2 + ρ dRn,l(ρ)

dρ
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V ℏ

2mEn,l
ρ Rn,l(ρ)
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The next thing that is generally done is to define a new dimensionless radial coordinate:

ρ ≡
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ℏ
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Then the equation is:

En,l Rn,l(ρ) = - ℏ2

2m
2mEn,l

ℏ2  d
2Rn,l(ρ)

dρ2 + 1
ρ

dRn,l(ρ)

dρ
 + V ℏ

2mEn,l
ρ Rn,l(ρ) +

ℏ2

2m
l2 2mEn,l

ℏ2

Rn,l(ρ)

ρ2

or, dividing through by En,l

Rn,l(r) = - d
2Rn,l(ρ)

dρ2 + 1
ρ

dRn,l(ρ)

dρ
 +

V ℏ

2mEn,l
ρ Rn,l(ρ)

En,l
+ l2 Rn,l(ρ)

ρ2

or,

ρ2 - l2 Rn,l(ρ) + ρ2 d2Rn,l(ρ)

dρ2 + ρ dRn,l(ρ)

dρ
 - ρ2

V ℏ

2mEn,l
ρ Rn,l(ρ)

En,l
= 0

SchroSolver

I believe it is common to define a new function Ρn,l(ρ) = ρα Rn,l(ρ) and then to choose α to put the 

equation into a form that has no first derivative, dPn,l(ρ)

dρ
. We could do that! It’s good chain rule practice. 

It just involves studying the terms in the square brackets. Can you see why we would do it?

Even without doing it, if you believe there is a choice of α  which makes the first derivative go away, it 
is pretty clear that we get a differential equation that looks 
like:

ρ2 - l2 + some constant involving α ρα Pn,l(ρ) + ρ2+α d2Pn,l(ρ)

dρ2 - ρ2+α
V ℏ

2mEn,l
ρ Pn,l(ρ)

En,l
= 0

Can’t we solve this for d
2Pn,l(ρ)

dρ2  and then throw SchroSolver at it?

That is exactly what Moore has done when he gives you the choice in the pop-up list to study 
Hydrogen.
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The Three-Dimensional Schrödinger Equation in Polar Coordinates

I said the two-dimensional case was the gateway to the three-dimensional case. Here is Schrodinger’s 
equation in three dimen-
sions:

Enψ(r, θ, ϕ) = - ℏ2

2m
 ∂

2ψ(r,θ,ϕ)
∂r2 + 2

r
∂ψ(r,θ,ϕ)

∂r
+ 1
r2 sinθ

∂
∂θ

∂(sinθ·ψ(r,θ,ϕ))
∂θ

+ 1
r2 sin2 θ

∂2ψ(r,θ,ϕ)
∂ϕ2  + V(r) ψ(r, θ, ϕ).

This is definitely getting worse, but the game that is played to solve it is exactly the one that was 
played in 2-d. You make the ansatz

ψ(r, θ, ϕ) = ψ(r) Y(θ, ϕ)

You rearrange and argue that you have a LHS that only involves r and ψ(r) and a RHS that only 
involves θ, ϕ, and Y(θ, ϕ). In the end you discover what is on the following three pages, which is a set 
of functions Yl,m(θ, ϕ) that depend on two integers l and m. They are called the spherical harmonics.

There is more about the Yl,m(θ, ϕ) at https://mathworld.wolfram.com/SphericalHarmonic.html

Summary of Three-Dimensional Case

If you never take any more quantum mechanics, there are three things to know about the three-
dimensional case.

(1) There is a function R(r) that captures the radial dependence of ψ(r, θ, ϕ). Furthermore, R(r) is 
indexed by two integers n and l. So the radial dependence is given by Rn,l(r). You already know lots 
about these functions on general grounds and you can study them in SchroSolver.

(2) There are functions Yl,m(θ, ϕ) that capture the angular dependence of ψ(r, θ, ϕ). They solve a 
differential equation that *only* involves a constant l2. The fact that the constant doesn’t depend on 
m is called degeneracy.

(3) The wave functions that solve Hydrogen in total depend three constants, n, l, and m, but it turns 
out that E only depends on n! This is further degeneracy!
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The spherical harmonics  are the angular portion of the solution to Laplace's equation in

spherical coordinates where azimuthal symmetry is not present. Some care must be taken in
identifying the notational convention being used. In this entry,  is taken as the polar (colatitudinal)
coordinate with , and  as the azimuthal (longitudinal) coordinate with . This is
the convention normally used in physics, as described by Arfken (1985) and the Wolfram Language (in
mathematical literature,  usually denotes the longitudinal coordinate and  the colatitudinal
coordinate). Spherical harmonics are implemented in the Wolfram Language as SphericalHarmonicY[l,
m, theta, phi].

Spherical harmonics satisfy the spherical harmonic differential equation, which is given by the angular
part of Laplace's equation in spherical coordinates. Writing  in this equation gives

(1)

Multiplying by  gives

(2)

Using separation of variables by equating the -dependent portion to a constant gives

(3)

which has solutions

(4)

Plugging in (3) into (2) gives the equation for the -dependent portion, whose solution is

(5)

where , , ..., 0, ..., ,  and  is an associated Legendre polynomial. The

spherical harmonics are then defined by combining  and ,

(6)

Search
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where the normalization is chosen such that

(7)

(Arfken 1985, p. 681). Here,  denotes the complex conjugate and  is the Kronecker delta.
Sometimes (e.g., Arfken 1985), the Condon-Shortley phase  is prepended to the definition of the
spherical harmonics.

The spherical harmonics are sometimes separated into their real and imaginary parts,

(8)

(9)

The spherical harmonics obey

(10)

(11)

(12)

where  is a Legendre polynomial.

Integrals of the spherical harmonics are given by

(13)

where  is a Wigner 3j-symbol (which is related to the Clebsch-Gordan coefficients).

Special cases include

(14)

(15)

(16)

(17)

(Arfken 1985, p. 700).
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The above illustrations show  (top),  (bottom le#), and 

(bottom right). The first few spherical harmonics are

(18)

(19)

(20)

(21)

(22)


