```
ln[1]:= w1[t_] := (Sin[2Pi t] + 20 / 21 Sin[2.1Pi t]) / 2
ln[2]:= w2[t_] := (Sin[2Pi t] - 20 / 21 Sin[2.1Pi t]) / 2
```

$\operatorname{In}[6]=$ Animate $[P \operatorname{lot}[\{w 1[t], w 2[t]\},\{t, 0, a\}, P \operatorname{lotRange} \rightarrow\{\{0,40\},\{-1,1\}\}$,
PlotPoints \rightarrow 5000, Epilog \rightarrow \{\{Blue, PointSize@Large, Point[\{a, w1[a]\}]\},
\{Orange, PointSize@Large, Point[\{a, w2[a]\}]\}\}],
$\{a, 0,40\}$, AnimationRate $\rightarrow 0.5$, AnimationRepetitions $\rightarrow 1$]

Here is a video where a guy animated two pendulums connected weakly by a spring:
https://youtu.be/-5sZk8FTVag

And this guy did it for real in the lab with two pendulums:
https://youtu.be/CguKK19mX2s

I hope it is obvious that the three springs and two masses problem is closely related to this demonstration, which has two pendulums and one spring. I didn't see any YouTube videos of three springs and two masses.

