
3.3 NEWTON’S UNIVERSAL LAW OF GRAVITATION

Learning Objectives

By the end of this section, you will be able to:

Explain what determines the strength of gravity

Describe how Newton’s universal law of gravitation extends our understanding of Kepler’s laws

Newton’s laws of motion show that objects at rest will stay at rest and those in motion will continue moving

uniformly in a straight line unless acted upon by a force. Thus, it is the straight line that defines the most natural

state of motion. But the planets move in ellipses, not straight lines; therefore, some force must be bending their

paths. That force, Newton proposed, was gravity.

In Newton’s time, gravity was something associated with Earth alone. Everyday experience shows us that Earth

exerts a gravitational force upon objects at its surface. If you drop something, it accelerates toward Earth as it

falls. Newton’s insight was that Earth’s gravity might extend as far as the Moon and produce the force required

to curve the Moon’s path from a straight line and keep it in its orbit. He further hypothesized that gravity is not

limited to Earth, but that there is a general force of attraction between all material bodies. If so, the attractive

force between the Sun and each of the planets could keep them in their orbits. (This may seem part of our

everyday thinking today, but it was a remarkable insight in Newton’s time.)

Once Newton boldly hypothesized that there was a universal attraction among all bodies everywhere in

space, he had to determine the exact nature of the attraction. The precise mathematical description of that

gravitational force had to dictate that the planets move exactly as Kepler had described them to (as expressed

in Kepler’s three laws). Also, that gravitational force had to predict the correct behavior of falling bodies on

Earth, as observed by Galileo. How must the force of gravity depend on distance in order for these conditions

to be met?

The answer to this question required mathematical tools that had not yet been developed, but this did not deter

Isaac Newton, who invented what we today call calculus to deal with this problem. Eventually he was able to

conclude that the magnitude of the force of gravity must decrease with increasing distance between the Sun

and a planet (or between any two objects) in proportion to the inverse square of their separation. In other

words, if a planet were twice as far from the Sun, the force would be (1/2)2, or 1/4 as large. Put the planet three

times farther away, and the force is (1/3)2, or 1/9 as large.

Newton also concluded that the gravitational attraction between two bodies must be proportional to their

masses. The more mass an object has, the stronger the pull of its gravitational force. The gravitational attraction

between any two objects is therefore given by one of the most famous equations in all of science:
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where Fgravity is the gravitational force between two objects, M1 and M2 are the masses of the two objects, and

R is their separation. G is a constant number known as the universal gravitational constant, and the equation

itself symbolically summarizes Newton’s universal law of gravitation. With such a force and the laws of motion,

Newton was able to show mathematically that the only orbits permitted were exactly those described by

Kepler’s laws.

Newton’s universal law of gravitation works for the planets, but is it really universal? The gravitational theory

should also predict the observed acceleration of the Moon toward Earth as it orbits Earth, as well as of any
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object (say, an apple) dropped near Earth’s surface. The falling of an apple is something we can measure quite

easily, but can we use it to predict the motions of the Moon?

Recall that according to Newton’s second law, forces cause acceleration. Newton’s universal law of gravitation

says that the force acting upon (and therefore the acceleration of) an object toward Earth should be inversely

proportional to the square of its distance from the center of Earth. Objects like apples at the surface of Earth, at

a distance of one Earth-radius from the center of Earth, are observed to accelerate downward at 9.8 meters per

second per second (9.8 m/s2).

It is this force of gravity on the surface of Earth that gives us our sense of weight. Unlike your mass, which would

remain the same on any planet or moon, your weight depends on the local force of gravity. So you would weigh

less on Mars and the Moon than on Earth, even though there is no change in your mass. (Which means you

would still have to go easy on the desserts in the college cafeteria when you got back!)

The Moon is 60 Earth radii away from the center of Earth. If gravity (and the acceleration it causes) gets weaker

with distance squared, the acceleration the Moon experiences should be a lot less than for the apple. The

acceleration should be (1/60)2 = 1/3600 (or 3600 times less—about 0.00272 m/s2. This is precisely the observed

acceleration of the Moon in its orbit. (As we shall see, the Moon does not fall to Earth with this acceleration, but

falls around Earth.) Imagine the thrill Newton must have felt to realize he had discovered, and verified, a law

that holds for Earth, apples, the Moon, and, as far as he knew, everything in the universe.

Gravity is a “built-in” property of mass. Whenever there are masses in the universe, they will interact via the

force of gravitational attraction. The more mass there is, the greater the force of attraction. Here on Earth, the

largest concentration of mass is, of course, the planet we stand on, and its pull dominates the gravitational

interactions we experience. But everything with mass attracts everything else with mass anywhere in the

universe.

Newton’s law also implies that gravity never becomes zero. It quickly gets weaker with distance, but it continues

E X A M P L E  3 . 3

Calculating Weight

By what factor would a person’s weight at the surface of Earth change if Earth had its present mass but

eight times its present volume?

Solution

With eight times the volume, Earth’s radius would double. This means the gravitational force at the

surface would reduce by a factor of (1/2)2 = 1/4, so a person would weigh only one-fourth as much.

Check Your Learning

By what factor would a person’s weight at the surface of Earth change if Earth had its present size but

only one-third its present mass?

Answer:

With one-third its present mass, the gravitational force at the surface would reduce by a factor of 1/3, so

a person would weight only one-third as much.
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to act to some degree no matter how far away you get. The pull of the Sun is stronger at Mercury than at

Pluto, but it can be felt far beyond Pluto, where astronomers have good evidence that it continuously makes

enormous numbers of smaller icy bodies move around huge orbits. And the Sun’s gravitational pull joins with

the pull of billions of others stars to create the gravitational pull of our Milky Way Galaxy. That force, in turn, can

make other smaller galaxies orbit around the Milky Way, and so on.

Why is it then, you may ask, that the astronauts aboard the Space Shuttle appear to have no gravitational forces

acting on them when we see images on television of the astronauts and objects floating in the spacecraft? After

all, the astronauts in the shuttle are only a few hundred kilometers above the surface of Earth, which is not

a significant distance compared to the size of Earth, so gravity is certainly not a great deal weaker that much

farther away. The astronauts feel “weightless” (meaning that they don’t feel the gravitational force acting on

them) for the same reason that passengers in an elevator whose cable has broken or in an airplane whose

engines no longer work feel weightless: they are falling (Figure 3.9).[2]

Figure 3.9 Astronauts in Free Fall. While in space, astronauts are falling freely, so they experience “weightlessness.” Clockwise from top left:
Tracy Caldwell Dyson (NASA), Naoko Yamzaki (JAXA), Dorothy Metcalf-Lindenburger (NASA), and Stephanie Wilson (NASA). (credit: NASA)

When falling, they are in free fall and accelerate at the same rate as everything around them, including their

spacecraft or a camera with which they are taking photographs of Earth. When doing so, astronauts experience

no additional forces and therefore feel “weightless.” Unlike the falling elevator passengers, however, the

astronauts are falling around Earth, not to Earth; as a result they will continue to fall and are said to be “in orbit”

around Earth (see the next section for more about orbits).

Orbital Motion and Mass
Kepler’s laws describe the orbits of the objects whose motions are described by Newton’s laws of motion and

2 In the film Apollo 13, the scenes in which the astronauts were “weightless” were actually filmed in a falling airplane. As you might imagine,
the plane fell for only short periods before the engines engaged again.
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the law of gravity. Knowing that gravity is the force that attracts planets toward the Sun, however, allowed

Newton to rethink Kepler’s third law. Recall that Kepler had found a relationship between the orbital period of a

planet’s revolution and its distance from the Sun. But Newton’s formulation introduces the additional factor of

the masses of the Sun (M1) and the planet (M2), both expressed in units of the Sun’s mass. Newton’s universal

law of gravitation can be used to show mathematically that this relationship is actually
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where a is the semimajor axis and P is the orbital period.

How did Kepler miss this factor? In units of the Sun’s mass, the mass of the Sun is 1, and in units of the Sun’s

mass, the mass of a typical planet is a negligibly small factor. This means that the sum of the Sun’s mass and

a planet’s mass, (M1 + M2), is very, very close to 1. This makes Newton’s formula appear almost the same as

Kepler’s; the tiny mass of the planets compared to the Sun is the reason that Kepler did not realize that both

masses had to be included in the calculation. There are many situations in astronomy, however, in which we do

need to include the two mass terms—for example, when two stars or two galaxies orbit each other.

Including the mass term allows us to use this formula in a new way. If we can measure the motions (distances

and orbital periods) of objects acting under their mutual gravity, then the formula will permit us to deduce their

masses. For example, we can calculate the mass of the Sun by using the distances and orbital periods of the

planets, or the mass of Jupiter by noting the motions of its moons.

Indeed, Newton’s reformulation of Kepler’s third law is one of the most powerful concepts in astronomy. Our

ability to deduce the masses of objects from their motions is key to understanding the nature and evolution of

many astronomical bodies. We will use this law repeatedly throughout this text in calculations that range from

the orbits of comets to the interactions of galaxies.

E X A M P L E  3 . 4

Calculating the Effects of Gravity

A planet like Earth is found orbiting its star at a distance of 1 AU in 0.71 Earth-year. Can you use Newton’s

version of Kepler’s third law to find the mass of the star? (Remember that compared to the mass of a

star, the mass of an earthlike planet can be considered negligible.)

Solution

In the formula a3 = (M1 + M2) × P2, the factor M1 + M2 would now be approximately equal to M1 (the mass

of the star), since the planet’s mass is so small by comparison. Then the formula becomes a3 = M1 × P2,

and we can solve for M1:
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Since a = 1, a3 = 1, so
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So the mass of the star is twice the mass of our Sun. (Remember that this way of expressing the law has

units in terms of Earth and the Sun, so masses are expressed in units of the mass of our Sun.)
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