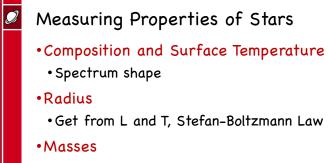
Properties of Stars & Star Formation

Physics 090 Saint Mary's College of California Professor Aaron Lee

Measuring Properties of Stars


•Distance

- Parallax method for nearby stars
- Brightness (Intensity)
- Easy to measure is it bright or dim?

•Luminosity

- •Get from brightness and distance
- Physical relationships for special objects (e.g., Cepheid Variables)

SPRING 2020 LECTURE

• Binary stars

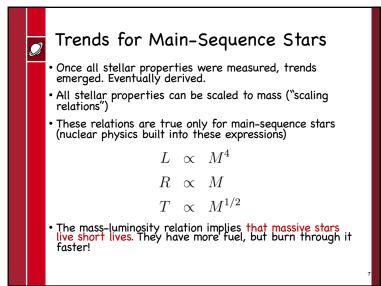
• Physical relationships for typical ("mainsequence") stars.

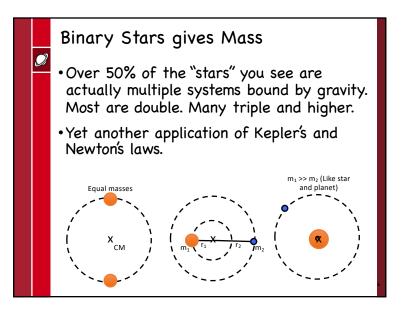
SPRING 2020 LECTURE

	Analysis	ofs	tellar spectru	m						
9	 Color, absorption lines, detailed shape gives you <u>temperature</u> and <u>chemical composition</u> 									
	Spectral Class: Primarily based on temperature.									
		Туре	Surface Temp (K)							
	"blue"	0	> 30,000	Subtypes :						
		В	10,000 - 30,000	G0 (hottest) to						
		А	7,500 – 10,000	G9 (coldest)						
	"white"	F	6,000 – 7,500							
		G	5,000 - 6,000							
		K	3,500 – 5,000							
	"red"	М	2,200 – 3,500							
		L	1,300 – 2,200							
	"brown dwarfs"	Т	< 1,300 (recent)							
	The Sun:	G2	T = 5,800 K	4						

Sizes of stars

Ø


• Stefan-Boltzmann Law: Derived in upper-level thermodynamics.

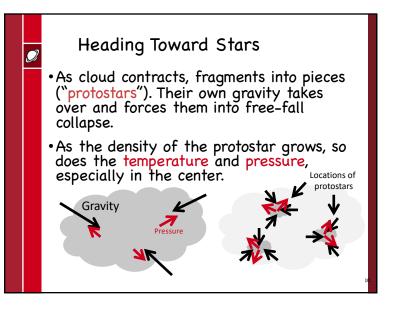

$$L = 4\pi R^2 \sigma T^4$$

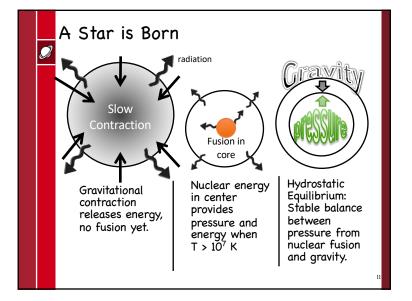
(\sigma = constant)

SPRING 2020

LECTURE

•Takeaway: relates L and T to R!




Туре	Mass (Sun)	т (К)	Luminosity (Sun)	R (Sun)
05	40	40,000	500,000	18
BO	18	28,000	20,000	7.4
B5	6.5	15,000	800	3.8
A0	3.2	10,000	80	2.5
FO	1.7	7,400	6	1.4
G0	1.1	6,000	1.3	1.1
ко	0.8	4,900	0.4	0.8
M0	0.5	3,500	0.03	0.6
M5	0.2	2,800	0.008	0.3

Stars and Star Formation

Ø

- Gravity's constant battle against pressure.
- Gravity wants to brings everything together.
- (Thermal) Pressure wants to spread everything out.
- Start with a giant cloud of gas. If massive enough, own self gravity can cause collapse.
- Cloud fragments into multiple stars all forming simultaneously.
- As regions condense, collisions raise temperature up. Eventually hot enough to be stars.

A Star is Born When the temperatures get sufficiently high in the center (> 10⁷ K), quantum nuclear reactions start to take place: A STAR IS BORN! Star settles onto the main sequence; contraction ceases. L and T stabilize. Nuclear reactions provide a counterbalance against gravity's never-ending pull. Star is in "hydrostatic equilibrium"