Hertzsprung-Russell Diagram

Parallax Formula

Intensity, Power, and Distance

Absolute Magnitude

Introduce Hertzsprung-Russell Diagram

Physics 090

2020-04-20

$$I = \frac{L}{4 \pi R^2}$$

$$L = 4 \pi R^2 I$$

or

Luminosity, Intensity, and Distance

Parallax Angle

 $1 \text{ A.U.} = 1.496 \times 10^{11} \text{ m}$

1 parsec = $3.086 \times 10^{16} \, \text{m}$

1 light-year = $0.9461 \times 10^{16} \, \text{m}$

Definitions are Much More Important for Understanding than the Values

Absolute Magnitude

The apparent magnitude of a star if it were moved to the 'standard' distance of 10 parsecs.

Example:

Our Sun: Apparent Magnitude -26.74
Actual Distance 1 A.U. = 1.496 x10¹¹ m
Move to 10 parsecs = 3.086 x10¹⁷ m
Get magnitude of 4.83

Classifying the Stars

Hertzsprung-Russell Diagram

ESA Visualization: Sorting the Stars

https://youtu.be/jutw-IOwriw

Visualizing the creation of the Hertzsprung-Russell Diagram with a Gaia DR2 sample

- 1. Sort Horizontally by Color
- 2. Sort Vertically by Absolute Magnitude (Luminosity)

See also ESA GAIA Mission: https://youtu.be/Q_SnUBqXTEs

Another
HertzsprungRussell Diagram
(with 23,000
nearby stars)

