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Thinking Ahead

How large is the universe? What is the most distant object we can see? These are among the most fundamental

questions astronomers can ask. But just as babies must crawl before they can take their first halting steps, so

too must we start with a more modest question: How far away are the stars? And even this question proves to

be very hard to answer. After all, stars are mere points of light. Suppose you see a point of light in the darkness

when you are driving on a country road late at night. How can you tell whether it is a nearby firefly, an oncoming

motorcycle some distance away, or the porchlight of a house much farther down the road? It’s not so easy, is

it? Astronomers faced an even more difficult problem when they tried to estimate how far away the stars are.

In this chapter, we begin with the fundamental definitions of distances on Earth and then extend our reach

outward to the stars. We will also examine the newest satellites that are surveying the night sky and discuss the

special types of stars that can be used as trail markers to distant galaxies.

19.1 FUNDAMENTAL UNITS OF DISTANCE

Learning Objectives

By the end of this section, you will be able to:

Figure 19.1 Globular Cluster M80. This beautiful image shows a giant cluster of stars called Messier 80, located about 28,000 light-years from
Earth. Such crowded groups, which astronomers call globular clusters, contain hundreds of thousands of stars, including some of the RR Lyrae
variables discussed in this chapter. Especially obvious in this picture are the bright red giants, which are stars similar to the Sun in mass that are
nearing the ends of their lives. (credit: modification of work by The Hubble Heritage Team (AURA/ STScI/ NASA))
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Understand the importance of defining a standard distance unit

Explain how the meter was originally defined and how it has changed over time

Discuss how radar is used to measure distances to the other members of the solar system

The first measures of distances were based on human dimensions—the inch as the distance between knuckles

on the finger, or the yard as the span from the extended index finger to the nose of the British king. Later, the

requirements of commerce led to some standardization of such units, but each nation tended to set up its own

definitions. It was not until the middle of the eighteenth century that any real efforts were made to establish a

uniform, international set of standards.

The Metric System
One of the enduring legacies of the era of the French emperor Napoleon is the establishment of the metric

system of units, officially adopted in France in 1799 and now used in most countries around the world. The

fundamental metric unit of length is the meter, originally defined as one ten-millionth of the distance along

Earth’s surface from the equator to the pole. French astronomers of the seventeenth and eighteenth centuries

were pioneers in determining the dimensions of Earth, so it was logical to use their information as the

foundation of the new system.

Practical problems exist with a definition expressed in terms of the size of Earth, since anyone wishing to

determine the distance from one place to another can hardly be expected to go out and re-measure the planet.

Therefore, an intermediate standard meter consisting of a bar of platinum-iridium metal was set up in Paris. In

1889, by international agreement, this bar was defined to be exactly one meter in length, and precise copies of

the original meter bar were made to serve as standards for other nations.

Other units of length are derived from the meter. Thus, 1 kilometer (km) equals 1000 meters, 1 centimeter (cm)

equals 1/100 meter, and so on. Even the old British and American units, such as the inch and the mile, are now

defined in terms of the metric system.

Modern Redefinitions of the Meter
In 1960, the official definition of the meter was changed again. As a result of improved technology for

generating spectral lines of precisely known wavelengths (see the chapter on Radiation and Spectra), the

meter was redefined to equal 1,650,763.73 wavelengths of a particular atomic transition in the element

krypton-86. The advantage of this redefinition is that anyone with a suitably equipped laboratory can reproduce

a standard meter, without reference to any particular metal bar.

In 1983, the meter was defined once more, this time in terms of the velocity of light. Light in a vacuum can travel

a distance of one meter in 1/299,792,458.6 second. Today, therefore, light travel time provides our basic unit

of length. Put another way, a distance of one light-second (the amount of space light covers in one second) is

defined to be 299,792,458.6 meters. That’s almost 300 million meters that light covers in just one second; light

really is very fast! We could just as well use the light-second as the fundamental unit of length, but for practical

reasons (and to respect tradition), we have defined the meter as a small fraction of the light-second.

Distance within the Solar System
The work of Copernicus and Kepler established the relative distances of the planets—that is, how far from the

Sun one planet is compared to another (see Observing the Sky: The Birth of Astronomy and Orbits and

Gravity). But their work could not establish the absolute distances (in light-seconds or meters or other standard

units of length). This is like knowing the height of all the students in your class only as compared to the height

of your astronomy instructor, but not in inches or centimeters. Somebody’s height has to be measured directly.
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Similarly, to establish absolute distances, astronomers had to measure one distance in the solar system directly.

Generally, the closer to us the object is, the easier such a measurement would be. Estimates of the distance to

Venus were made as Venus crossed the face of the Sun in 1761 and 1769, and an international campaign was

organized to estimate the distance to the asteroid Eros in the early 1930s, when its orbit brought it close to

Earth. More recently, Venus crossed (or transited) the surface of the Sun in 2004 and 2012, and allowed us to

make a modern distance estimate, although, as we will see below, by then it wasn’t needed (Figure 19.2).

Figure 19.2 Venus Transits the Sun, 2012. This striking “picture” of Venus crossing the face of the Sun (it’s the black dot at about 2 o’clock) is
more than just an impressive image. Taken with the Solar Dynamics Observatory spacecraft and special filters, it shows a modern transit of
Venus. Such events allowed astronomers in the 1800s to estimate the distance to Venus. They measured the time it took Venus to cross the face
of the Sun from different latitudes on Earth. The differences in times can be used to estimate the distance to the planet. Today, radar is used for
much more precise distance estimates. (credit: modification of work by NASA/SDO, AIA)

The key to our modern determination of solar system dimensions is radar, a type of radio wave that can

bounce off solid objects (Figure 19.3). As discussed in several earlier chapters, by timing how long a radar

beam (traveling at the speed of light) takes to reach another world and return, we can measure the distance

involved very accurately. In 1961, radar signals were bounced off Venus for the first time, providing a direct

measurement of the distance from Earth to Venus in terms of light-seconds (from the roundtrip travel time of

the radar signal).

Subsequently, radar has been used to determine the distances to Mercury, Mars, the satellites of Jupiter, the

rings of Saturn, and several asteroids. Note, by the way, that it is not possible to use radar to measure the

distance to the Sun directly because the Sun does not reflect radar very efficiently. But we can measure the

distance to many other solar system objects and use Kepler’s laws to give us the distance to the Sun.

L I N K  T O  L E A R N I N G

If you would like more information on just how the motion of Venus across the Sun helped us pin down

distances in the solar system, you can turn to a nice explanation (https://openstaxcollege.org/l/

30VenusandSun) by a NASA astronomer.
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Figure 19.3 Radar Telescope. This dish-shaped antenna, part of the NASA Deep Space Network in California’s Mojave Desert, is 70 meters
wide. Nicknamed the “Mars antenna,” this radar telescope can send and receive radar waves, and thus measure the distances to planets,
satellites, and asteroids. (credit: NASA/JPL-Caltech)

From the various (related) solar system distances, astronomers selected the average distance from Earth to

the Sun as our standard “measuring stick” within the solar system. When Earth and the Sun are closest, they

are about 147.1 million kilometers apart; when Earth and the Sun are farthest, they are about 152.1 million

kilometers apart. The average of these two distances is called the astronomical unit (AU). We then express all

the other distances in the solar system in terms of the AU. Years of painstaking analyses of radar measurements

have led to a determination of the length of the AU to a precision of about one part in a billion. The length of 1

AU can be expressed in light travel time as 499.004854 light-seconds, or about 8.3 light-minutes. If we use the

definition of the meter given previously, this is equivalent to 1 AU = 149,597,870,700 meters.

These distances are, of course, given here to a much higher level of precision than is normally needed. In this

text, we are usually content to express numbers to a couple of significant places and leave it at that. For our

purposes, it will be sufficient to round off these numbers:

TQFFE�PG�MJHIU� D � � � ��� N�T � � � ��� LN�T
MFOHUI�PG�MJHIU�TFDPOE��MT � � � ��� N � � � ��� LN
BTUSPOPNJDBM�VOJU��"6 � ���� � ���� N � ���� � ��� LN � ��� MJHIU�TFDPOET

We now know the absolute distance scale within our own solar system with fantastic accuracy. This is the first

link in the chain of cosmic distances.

L I N K  T O  L E A R N I N G

The distances between the celestial bodies in our solar system are sometimes difficult to grasp or put

into perspective. This interactive website (https://openstaxcollege.org/l/30DistanceScale) provides a

“map” that shows the distances by using a scale at the bottom of the screen and allows you to scroll
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19.2 SURVEYING THE STARS

Learning Objectives

By the end of this section, you will be able to:

Understand the concept of triangulating distances to distant objects, including stars

Explain why space-based satellites deliver more precise distances than ground-based methods

Discuss astronomers’ efforts to study the stars closest to the Sun

It is an enormous step to go from the planets to the stars. For example, our Voyager 1 probe, which was

launched in 1977, has now traveled farther from Earth than any other spacecraft. As this is written in 2016,

Voyager 1 is 134 AU from the Sun.[1] The nearest star, however, is hundreds of thousands of AU from Earth. Even

so, we can, in principle, survey distances to the stars using the same technique that a civil engineer employs to

survey the distance to an inaccessible mountain or tree—the method of triangulation.

Triangulation in Space
A practical example of triangulation is your own depth perception. As you are pleased to discover every morning

when you look in the mirror, your two eyes are located some distance apart. You therefore view the world from

two different vantage points, and it is this dual perspective that allows you to get a general sense of how far

away objects are.

To see what we mean, take a pen and hold it a few inches in front of your face. Look at it first with one eye

(closing the other) and then switch eyes. Note how the pen seems to shift relative to objects across the room.

Now hold the pen at arm’s length: the shift is less. If you play with moving the pen for a while, you will notice

that the farther away you hold it, the less it seems to shift. Your brain automatically performs such comparisons

and gives you a pretty good sense of how far away things in your immediate neighborhood are.

If your arms were made of rubber, you could stretch the pen far enough away from your eyes that the shift

would become imperceptible. This is because our depth perception fails for objects more than a few tens of

meters away. In order to see the shift of an object a city block or more from you, your eyes would need to be

spread apart a lot farther.

Let’s see how surveyors take advantage of the same idea. Suppose you are trying to measure the distance to

a tree across a deep river (Figure 19.4). You set up two observing stations some distance apart. That distance

(line AB in Figure 19.4) is called the baseline. Now the direction to the tree (C in the figure) in relation to the

baseline is observed from each station. Note that C appears in different directions from the two stations. This

apparent change in direction of the remote object due to a change in vantage point of the observer is called

parallax.

(using your arrow keys) through screens of “empty space” to get to the next planet—all while your

current distance from the Sun is visible on the scale.

1 To have some basis for comparison, the dwarf planet Pluto orbits at an average distance of 40 AU from the Sun, and the dwarf planet Eris is
currently roughly 96 AU from the Sun.
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Figure 19.4 Triangulation. Triangulation allows us to measure distances to inaccessible objects. By getting the angle to a tree from two
different vantage points, we can calculate the properties of the triangle they make and thus the distance to the tree.

The parallax is also the angle that lines AC and BC make—in mathematical terms, the angle subtended by the

baseline. A knowledge of the angles at A and B and the length of the baseline, AB, allows the triangle ABC to be

solved for any of its dimensions—say, the distance AC or BC. The solution could be reached by constructing a

scale drawing or by using trigonometry to make a numerical calculation. If the tree were farther away, the whole

triangle would be longer and skinnier, and the parallax angle would be smaller. Thus, we have the general rule

that the smaller the parallax, the more distant the object we are measuring must be.

In practice, the kinds of baselines surveyors use for measuring distances on Earth are completely useless

when we try to gauge distances in space. The farther away an astronomical object lies, the longer the baseline

has to be to give us a reasonable chance of making a measurement. Unfortunately, nearly all astronomical

objects are very far away. To measure their distances requires a very large baseline and highly precise angular

measurements. The Moon is the only object near enough that its distance can be found fairly accurately with

measurements made without a telescope. Ptolemy determined the distance to the Moon correctly to within a

few percent. He used the turning Earth itself as a baseline, measuring the position of the Moon relative to the

stars at two different times of night.

With the aid of telescopes, later astronomers were able to measure the distances to the nearer planets and

asteroids using Earth’s diameter as a baseline. This is how the AU was first established. To reach for the stars,

however, requires a much longer baseline for triangulation and extremely sensitive measurements. Such a

baseline is provided by Earth’s annual trip around the Sun.

Distances to Stars
As Earth travels from one side of its orbit to the other, it graciously provides us with a baseline of 2 AU, or about

300 million kilometers. Although this is a much bigger baseline than the diameter of Earth, the stars are so far

away that the resulting parallax shift is still not visible to the naked eye—not even for the closest stars.

In the chapter on Observing the Sky: The Birth of Astronomy, we discussed how this dilemma perplexed the

ancient Greeks, some of whom had actually suggested that the Sun might be the center of the solar system,

with Earth in motion around it. Aristotle and others argued, however, that Earth could not be revolving about
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the Sun. If it were, they said, we would surely observe the parallax of the nearer stars against the background

of more distant objects as we viewed the sky from different parts of Earth’s orbit (Figure 19.6). Tycho Brahe

(1546–1601) advanced the same faulty argument nearly 2000 years later, when his careful measurements of

stellar positions with the unaided eye revealed no such shift.

These early observers did not realize how truly distant the stars were and how small the change in their

positions therefore was, even with the entire orbit of Earth as a baseline. The problem was that they did not

have tools to measure parallax shifts too small to be seen with the human eye. By the eighteenth century, when

there was no longer serious doubt about Earth’s revolution, it became clear that the stars must be extremely

distant. Astronomers equipped with telescopes began to devise instruments capable of measuring the tiny

shifts of nearby stars relative to the background of more distant (and thus unshifting) celestial objects.

This was a significant technical challenge, since, even for the nearest stars, parallax angles are usually only a

fraction of a second of arc. Recall that one second of arc (arcsec) is an angle of only 1/3600 of a degree. A coin

the size of a US quarter would appear to have a diameter of 1 arcsecond if you were viewing it from a distance

of about 5 kilometers (3 miles). Think about how small an angle that is. No wonder it took astronomers a long

time before they could measure such tiny shifts.

The first successful detections of stellar parallax were in the year 1838, when Friedrich Bessel in Germany

(Figure 19.5), Thomas Henderson, a Scottish astronomer working at the Cape of Good Hope, and Friedrich

Struve in Russia independently measured the parallaxes of the stars 61 Cygni, Alpha Centauri, and Vega,

respectively. Even the closest star, Alpha Centauri, showed a total displacement of only about 1.5 arcseconds

during the course of a year.

Figure 19.5 Friedrich Wilhelm Bessel (1784–1846), Thomas J. Henderson (1798–1844), and Friedrich Struve (1793–1864). (a) Bessel made the
first authenticated measurement of the distance to a star (61 Cygni) in 1838, a feat that had eluded many dedicated astronomers for almost a
century. But two others, (b) Scottish astronomer Thomas J. Henderson and (c) Friedrich Struve, in Russia, were close on his heels.

Figure 19.6 shows how such measurements work. Seen from opposite sides of Earth’s orbit, a nearby star shifts

position when compared to a pattern of more distant stars. Astronomers actually define parallax to be one-half

the angle that a star shifts when seen from opposite sides of Earth’s orbit (the angle labeled P in Figure 19.6).

The reason for this definition is just that they prefer to deal with a baseline of 1 AU instead of 2 AU.

Chapter 19 Celestial Distances 665



Figure 19.6 Parallax. As Earth revolves around the Sun, the direction in which we see a nearby star varies with respect to distant stars. We
define the parallax of the nearby star to be one half of the total change in direction, and we usually measure it in arcseconds.

Units of Stellar Distance
With a baseline of one AU, how far away would a star have to be to have a parallax of 1 arcsecond? The answer

turns out to be 206,265 AU, or 3.26 light-years. This is equal to 3.1 × 1013 kilometers (in other words, 31 trillion

kilometers). We give this unit a special name, the parsec (pc)—derived from “the distance at which we have a

parallax of one second.” The distance (D) of a star in parsecs is just the reciprocal of its parallax (p) in arcseconds;

that is,

% � �
Q

Thus, a star with a parallax of 0.1 arcsecond would be found at a distance of 10 parsecs, and one with a parallax

of 0.05 arcsecond would be 20 parsecs away.

Back in the days when most of our distances came from parallax measurements, a parsec was a useful unit of

distance, but it is not as intuitive as the light-year. One advantage of the light-year as a unit is that it emphasizes

the fact that, as we look out into space, we are also looking back into time. The light that we see from a star 100

light-years away left that star 100 years ago. What we study is not the star as it is now, but rather as it was in

the past. The light that reaches our telescopes today from distant galaxies left them before Earth even existed.

In this text, we will use light-years as our unit of distance, but many astronomers still use parsecs when they

write technical papers or talk with each other at meetings. To convert between the two distance units, just bear

in mind: 1 parsec = 3.26 light-year, and 1 light-year = 0.31 parsec.

E X A M P L E  1 9 . 1

How Far Is a Light-Year?
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A light-year is the distance light travels in 1 year. Given that light travels at a speed of 300,000 km/s, how

many kilometers are there in a light-year?

Solution

We learned earlier that speed = distance/time. We can rearrange this equation so that distance = velocity

× time. Now, we need to determine the number of seconds in a year.

There are approximately 365 days in 1 year. To determine the number of seconds, we must estimate the

number of seconds in 1 day.

We can change units as follows (notice how the units of time cancel out):

� EBZ � �� IS�EBZ � �� NJO�IS � �� T�NJO � ����� T�EBZ

Next, to get the number of seconds per year:

��� EBZT�ZFBS � ����� T�EBZ � �������� T�ZFBS

Now we can multiply the speed of light by the number of seconds per year to get the distance traveled by

light in 1 year:

EJTUBODF � WFMPDJUZ � UJNF
� ������ LN�T � �������� T
� ���� � ���� LN

That’s almost 10,000,000,000,000 km that light covers in a year. To help you imagine how long this

distance is, we’ll mention that a string 1 light-year long could fit around the circumference of Earth 236

million times.

Check Your Learning

The number above is really large. What happens if we put it in terms that might be a little more

understandable, like the diameter of Earth? Earth’s diameter is about 12,700 km.

Answer:

� MJHIU�ZFBS � ���� � ���� LN
� ���� � ���� LN � � &BSUI�EJBNFUFS

����� LN
� ���� � ��� &BSUI�EJBNFUFST

That means that 1 light-year is about 745 million times the diameter of Earth.

A S T R O N O M Y  B A S I C S

Naming Stars

You may be wondering why stars have such a confusing assortment of names. Just look at the first three

stars to have their parallaxes measured: 61 Cygni, Alpha Centauri, and Vega. Each of these names comes

from a different tradition of designating stars.
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