Physics 90 Final Exam — SOLUTION

May 18, 2020

1. Latitude

(D) -90°

2. Declination

180° isn't a valid declination. +90° and -90° are the celestial north and south pole. So it must be that Orion's Belt is (C) 0°.

3. Right Ascension

(C) Right ascension is measured with a sidereal clock which is set to 0h when ____The First Point of Aries__ passes across the observing slit.

4. Right Ascension

(C) 9h

5. Apparent Magnitude

(B) 6.3 times brighter

6. Apparent Magnitude

(B) Sirius has magnitude -1.46. This is _____brighter_____ than a magnitude 0 star by a factor of _____100^{1.46/5}_____.

7. Frequency and Period

(D) 10^{-9} seconds

8. Frequency from Wavelength

(A) 3×10^{11} Hz

9. The Kelvin scale

(C) 373K

10. Temperature Scales

(B) 10,000 °F

11. Temperature and Wavelength

(A) 10^6 nm (which is $10^3 \mu$ m or 1mm)

12. Temperature and Color

(B) white

13. Moon's Phases

The phase numbered 1 is: (A) New Moon

14. Moon's Phases

The phase numbered 5 is: (A) Full Moon

15. Moon's Phases

(A) The bright side is on the **right**, and the bright side is facing **West** where the Sun went down.

16. Prograde and Retrograde Motion

(B) **retrograde** motion, and Mars will be going **westward** through the stars.

17. Black Rock Desert Model

(B) grape (he used a blue marble) https://youtu.be/zR3Igc3Rhfg

18. Kepler's 3rd Law

(D) All of the above.

19. Circular Acceleration

(C) half the acceleration of Star A

20. Newton's Universal Law of Gravitation, Space Station

(B) the ISS is falling in a circle around the Earth and the ISS, Chris Hadfield, and his guitar are all in free fall together (one of the few problems I re-used with no wording change because I am really trying to emphasize it)

21. Newton's Universal Law of Gravitation, Proportional Reasoning

(D) one-quarter the force of Star A

22. Mass and Density of the Planets

(C) The rocky planets have densities approximately ___about five times___ the density of water (1000 kg/m^3).

23. Intensity

(A) 100 Watts

24. Fission and Fusion

It was unclear whether I was asking for what is produced or consumed, so we will take both A and B: BOTH GOOD (A) Hydrogen, consumed BOTH GOOD (B) Helium, produced

25. Ivy Mike Fusion Bomb and $E = mc^2$

(A) 500g (answer is 0.5kg, but you need to convert to grams to figure out the correct choice)

26. The Structure of the Sun

(A) The heat coming up through a poker rod if the tip of the poker is in the fireplace.

27. Parallax

The A.U. is about (E) 3 light-years

28. Parallax

(C) 8 parsecs away (because 1/0.125 = 8)

29. Inverse Square Law for Light

(D) 1/16 the intensity of Star 2

30. Inverse Square Law for Light

(D) 100 times dimmer

31. Absolute Magnitude

(C) 7

32. HR Diagrams

(C) +2.5

33. HR Diagrams

(A) the main sequence

34. Period-Luminosity Relationship

(A) 11.3

35. Period-Luminosity Relationship

(B) 12.5

36. Distance from Absolute Magnitude

This one is hard, you have to figure out how much change in distance results in 19 magnitudes. It's

 $\sqrt{100^{19/5}}$ =6309. Then you have to multiply that by the standard distance of 10 parsecs. The closest answer is (B) 60,000 parsecs

37. Apparent Magnitude from Distance

10 times as far is another 100 times dimmer which is five mags dimmer, so it would be apparent mag 17 (C) 17.

38. The Doppler Effect

(D) Stars coming toward us have their spectra ____blue-shifted_____, stars going away have their spectra _____red-shifted_____, and stars going perpendicularly have their spectra _____unaffected_____.

39. The Big Bang

(D) Hubble's 1929 paper predicted a Big Bang. In 1964, some scientists setting up a microwave receiver observed _____heavily red-shifted_____ light from the Big Bang. This light had been traveling toward their receiver for _____billions_____ of years

40. Galactic Rotation Curves

(A) You'd expect that stars closer than our Sun to the center of the galaxy would be going _____faster_____, and stars further than our Sun would be going _____slower____, but in the real data they are all ____going about the same speed as the Sun_____.