Ia. $\beta=(6,9) \quad$ all coordinates in meters

$$
a=\underset{\uparrow}{\substack{(-4,3) \\ \uparrow}}
$$

b. It goes 9-3 meters in 6-(-4) meters

$$
\frac{9-3}{6-(-4)}=\frac{6}{10}=\frac{3}{5}
$$

c. $\left(6-(-4)^{2}-(9-3)^{2}\right) m^{2}=\left(10^{2}-6^{2}\right) m^{2}$

$$
=(100-36) m^{2}=64 m^{2}
$$

d. $\sqrt{64 m^{2}}=8 \mathrm{~m}$
e. For a clock carried by the rocket, the
two events occur at the same two events occur at the same place (at the rocket). So the interval must just be due to the time difference \Rightarrow the time difference according to a clock on the rocket is 8 m .
$2 a \cdot\left[3^{r} / 3 m\right.$ It does two hypotenuses of
$\int_{\frac{3^{m}}{5} / \pi}^{2 m}$ It does two hypotenuses of
length $\sqrt{13} \mathrm{~m}$ in a round trip so the answer is $2 \sqrt{13} \mathrm{~m}$
b. The speed of the light time 1 is aisvenient

$$
2 \sqrt{13} \mathrm{~m}
$$

$$
\text { c. } \frac{4 m}{2 \sqrt{13} m} \leftarrow \text { travel } \longrightarrow \text { time } \longrightarrow \frac{z}{\sqrt{13}} \begin{aligned}
& \text { is the } \\
& \text { speed of } \\
& \text { the minors }
\end{aligned}
$$

Id. Jut 6 m (transverse dimensions are not affected and the transverse dimension -
e. Just 6 m which is traversed twice - is 3 m)
I could have asked one more question....
f. How much longer (ratio) is the round trip in the $7 a b$ frame than in the mirror frame?

$$
\frac{2 \sqrt{13} m}{6 m}=\frac{\sqrt{13}}{3}
$$

This better agree with the time dilation factor:

$$
\frac{1}{\sqrt{1-v^{2}}}=\frac{1}{\sqrt{1-\left(\frac{2}{\sqrt{13}}\right)^{2}}}=\frac{1}{\sqrt{1-\frac{4}{13}}}=\frac{1}{\sqrt{\frac{9}{13}}}=\frac{\sqrt{13}}{3}
$$

3. interval $^{2}=t^{2}-v^{2} t^{2}=\tau^{2}-0^{2}$

$$
\Rightarrow\left(1-v^{2}\right) t^{2}=\tau^{2} \Rightarrow t=\frac{\tau}{\sqrt{1-v^{2}}}
$$

4. Doppler Shift
a. Use $x=-\frac{1}{2}$ and $x=-(0.1)^{2}=-0.01$
b. $\frac{1}{\sqrt{1-0.12}} 2 s \approx\left(1-\frac{1}{2}(-0.01)\right) \mathrm{zs}$

$$
=(1.005) Z_{s}=2.010 \mathrm{~s}
$$

c. It is $v t$ farther away which is $0.1 \cdot 2.010 \mathrm{~s}=0.201 \mathrm{~s}$ farther away.
d. The successive flashes are $2.010 s$ apart, but they have a successively increasing delay of 0.201 s , so they are received $2.010 \mathrm{~s}+0.201 \mathrm{~s}=2.211 \mathrm{~s}$ apart.
BTW, if you want to see how well our approximations did, put the general formula into a calculator:

$$
\begin{aligned}
& \sqrt{\frac{1+0.1}{1-0.1}} Z_{s}=\sqrt{\frac{1.1}{0.9}} \mathrm{Zs}_{5} \\
& =\underbrace{2.2110}_{\text {r perfect }} 08319357 \mathrm{~s}
\end{aligned}
$$

sa. $\frac{0.5+0.5}{1+0.5 \times 0.5}=\frac{1}{1+\frac{1}{4}}=\frac{4}{5}=0.8$
b. $\frac{0.5+1}{\mid+0.5 \times 1}=\frac{1.5}{1.5}=1 \times \begin{gathered}\text { and you } \\ \text { don't even }\end{gathered}$ have to use the formula
to know this the speed of light is always 1.

