Special Relativity $=$ Term Z
final Exam Solution

1. Moving Mirrors


Resting distance between mirrors is 3 m . Speed $v=\frac{z}{\sqrt{13}}$. Round trip time on las exam was $Z \sqrt{13}$ meters of time.
(a)

$$
\begin{aligned}
v=\frac{2}{\sqrt{13}} \Rightarrow \gamma & =\frac{1}{\sqrt{1-v^{2}}}=\frac{1}{\sqrt{1-\frac{4}{13}}}=\frac{1}{\sqrt{9 / 13}} \\
& =\frac{\sqrt{13}}{3}
\end{aligned}
$$

So the space between the mirrors has

$$
\frac{3 m}{\sqrt{13} / 3}=\frac{9 m}{\sqrt{13}} \Longleftarrow \begin{aligned}
& \text { By the way, this is } \\
& \text { about } 2.5 \text { meters if } \\
& \text { you had a calculator }
\end{aligned}
$$

according to the lab frame observer. or about
(b) Total distance must | equal time

$$
\frac{9 m}{\sqrt{13}}+t_{\text {right }} \frac{2}{\sqrt{13}} \stackrel{!}{=} t_{\text {right }}
$$

$$
\begin{aligned}
& \text { of }_{\text {the }}^{\text {minter }} \\
& \text { mane } \\
& \text { length }
\end{aligned}
$$

$$
\Longrightarrow \quad t_{\text {right }}=\frac{9 m / \sqrt{13}}{1-2 / \sqrt{13}}=\frac{9 m}{\sqrt{13}-2}
$$

(c) Total distance must 1 equal time

$$
\begin{aligned}
& \frac{9 m}{\sqrt{13}}-t_{\text {left }} \frac{2}{\sqrt{13}}=t_{\text {left }} \\
& \Longrightarrow t_{\text {left }}=\frac{9 m / \sqrt{13}}{1+2 / \sqrt{13}}=\frac{9 m}{\sqrt{13}+2}
\end{aligned}
$$

(d) $t_{\text {right }}+t_{\text {left }}=9 m\left(\frac{1}{\sqrt{13}-2}+\frac{1}{\sqrt{13}+2}\right)$

$$
\begin{aligned}
& \text { (d) }(\text { cont'd) } \\
& t_{\text {right }}+t_{l e f t}=9 m \cdot \frac{\sqrt{13}+2+\sqrt{13}-2}{(\sqrt{13}-2) \cdot(\sqrt{13}+2)} \\
& =9 m \frac{2 \sqrt{13}}{13-4}=9 m \frac{2 \sqrt{13}}{9} \\
& =2 \sqrt{13} \text { meters of time }
\end{aligned}
$$

(e) Yes, it must agree, because according to the observer in the mirror frame all that has happened is that the apparatus has been rotated by $90^{\circ}$ and that cannot change the round trip time.
It sure looks like a very different experiment according to the lab frame observer, but it must all work out so that the lab frame round trip time is unchanged too, and indeed, it is unchanged:
$2 \sqrt{13}$ meters of time
ヘ
By the way, with a calculator, this is about
7.2 m , which is about $\frac{6}{5}$ of the minor frame round trip of 6 m
2. Rocket Approaching Spaceport Runway
(a) Plug ${ }_{\text {into }} x_{n}, m=n L$ and $t_{n, m}=m c$

$$
\begin{aligned}
& t_{n, m}^{\prime}=\gamma\left(t_{n, m}-v x_{n, m}\right)=\gamma(m \tau-v n L) \\
& x_{n, m}^{\prime}=\gamma\left(x_{n, m}-v t_{n, m}\right)=\gamma(u L-v m \tau)
\end{aligned}
$$

(b)

$$
\begin{gathered}
\left.x_{n+1, m}^{\prime \prime}-x_{x, m}^{\prime}=\gamma^{\prime}((x+1) c-v m t)-\gamma(x L-v m)^{\prime}\right) \\
=\gamma^{\prime} L
\end{gathered}
$$

(Gosh, shouldn't this be L/み not $\gamma L$ ?
Some Well, no! Length contraction is about distance, not coordinate difference. The runway lights are moving in the rocket Frame, the coordinate difference has to be done at the same time. we just calculated the coordinate difference at the m th coorflaing of the two lights. the same tine. flashes do not occur gat the same time.
(c)

$$
\begin{aligned}
& t_{n, m+1}^{\prime}-t_{n, m}^{\prime} m=\gamma^{\prime}((2 k+1) \tau-v,(L)-\gamma(2 x \tau-\nu, n) \\
& =\gamma^{\prime} \tau
\end{aligned}
$$

(d) $x_{n, m+1}^{\prime}-x_{n, m}^{\prime}=\gamma\left(n(1-r(m+1) \tau)-\gamma^{\prime}(m(-\nabla n \pi)\right.$

$$
=-\gamma^{1} v \tau
$$

(e) interval ${ }^{2}=\left(\gamma^{\prime} \tau\right)^{2}-\left(-\gamma^{\prime} v \tau\right)^{2}$

$$
=\gamma^{2}\left(1-v^{2}\right) \tau^{2}=\tau^{2}
$$

(f) Woo hoo! Yes.
(g) The time difference of the flashes is $\gamma^{1} \tau$. But in that time the flashing light has gotten $v \gamma^{\prime} \tau$ closer. So the time difference for flash arrivals is

$$
\begin{aligned}
& \gamma^{\prime} \tau-v^{\prime} \tau=(1-v) \frac{1}{\sqrt{1-v^{2}}} \tau \\
&=\frac{\sqrt{1-v}}{\sqrt{1+v}} \tau \\
& \frac{\tau}{\sqrt{1-v^{2}}}=\frac{1}{\sqrt{1-v}} \cdot \frac{1}{\sqrt{1+v}}
\end{aligned}
$$

(4) Jame but the flashing light has
gotten $v \gamma^{\prime} \tau$
farther so the time difference between flash arrivals is

$$
\begin{aligned}
\gamma \tau & +v \gamma \tau=(1+v) \frac{1}{\sqrt{1-v^{2}}} \tau \\
& =\frac{\sqrt{1+v}}{\sqrt{1-v}} \tau
\end{aligned}
$$

(i) $t_{n, 0}^{\prime}=-\gamma^{\prime} v n L$

$$
\begin{aligned}
& t_{n+1,0}^{\prime}-t_{n, 0}^{\prime}=-\gamma^{\prime} v(x+1) L-\left(-\gamma^{\prime} x_{n<L}\right) \\
& =-\gamma^{\prime} v L
\end{aligned}
$$

(j) Runway light $n+1$ had its oth flash YuLe earlier than runway light $n$. The rocket andits coordinates have moved $r \cdot \gamma r L$ in that time.
(k) Correct the $H_{L}$ we got in (b) by subtracting $V \cdot \gamma^{\prime} \vee L$, and we get:

