1-4 In this problem the "frich" is to repeatedly use finvariance of the ant the same flashes always recur at the same spot in the the rocket frame. so the interval con rocket time lapse squared. It can also be calculated from the laboratory time lapse ${ }^{2}$ - laboratory distance ${ }^{2}$
a.

$$
\begin{aligned}
& \text { interval }^{2}=7^{2} \\
& \text { interval }^{2}=10.72^{2}-5.95^{2}
\end{aligned}
$$

$$
\Rightarrow \quad ?=\sqrt{10.72^{2}-5.95^{2}}
$$

$$
=8.91 \text { seconds }
$$

$$
\operatorname{aln}_{\text {input }} t^{2} t s \text { in }
$$

$$
\text { 6. } \begin{aligned}
& \text { interval } \\
& \text { interval }=20^{2} \\
& \text { in }^{2}-99^{2} \\
& \Rightarrow \quad ?=\sqrt{20^{2}+992} \\
&=101 \text { seconds }
\end{aligned}
$$

$$
\text { c. } \quad \text { interval } 1^{2}=66.8^{2}
$$

$$
\text { interval }{ }^{2}=72.9^{2}-?^{2}
$$

$$
\begin{aligned}
\Longrightarrow ? & =\sqrt{72.9^{2}-66.8^{2}} \\
& =29.19 \text { lisht-seconds }
\end{aligned}
$$

d. Like a ? $=\sqrt{8.34^{2}-6.582}=5.125$
e. Like c. $?=\sqrt{22^{2}-212}=6.56$ ijsht-seonds

$$
\begin{gathered}
1-8 a \cdot \frac{1}{2} \frac{1}{1,000,000 / \mathrm{s}} 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=1.5 \times 10^{2} \mathrm{~m} \\
150 \text { meters! }
\end{gathered}
$$

Maximum size is decreased to 75 meters if the conductors conduct at $\frac{1}{2} c$.
b. Same as a, but reduced by 1000.

$$
\xrightarrow{C} \rightarrow 75 \mathrm{~mm} \text { or } 7.5 \mathrm{~cm} \text {. }
$$

C. $75 \mu \mathrm{~m}$ <- "micron"<-more common term $\begin{aligned} & \text { or micrometer } \\ & \text { or }\end{aligned}$
d. Some fraction of the operations require coordination between processors. If every 10,000 operations on a $/$ teraflop machine requires coordination, then every $\frac{10^{, 000}}{10^{12} / 5}=10^{-8} \mathrm{~s}$ it has to coordinate. In that case, it could be 75 cm . With those numbers the coordination takes all the tine. Let the coordination tate half the time. The machine can be 37.5 cm . The other half the time you net $\frac{1}{2}$ teraflop of computing capability.

1-10 a. Not at all, The transporter, reconstitute's you without aging you.
b. One year. Her only aging ours on Zircon.
c. 4,000,001 years.
d. At least 4,000,000 years (plus how long it takes the warriors to either win or lose).
e. The "carefu" in this part really means "don't get too fancy. If the transporternaut spends what is apparently (to her) one year moving with the galaxy then she is simply one year older when reconstituted back on Earth.
1-12 a. We are told not to worry about time stretching. Half will get to

$$
18 \times 10^{-5} \text { seconds } \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=5.4 \text { meters }
$$

b.	time in lab	distance in lab
time in meson frame cont ned di xt page	distance in mesonframe	

$1-126$. (cont'd) $v=0.9978 \quad \tau=18 \times 10^{-9} \mathrm{~s}$

x / v	x
τ	0

$$
\begin{aligned}
& \frac{x^{2}}{v^{2}}-x^{2}=\text { interval }^{2} \\
& \tau^{2}-0^{2}=\text { interval }^{2}
\end{aligned}
$$

\qquad
if we

$$
c \quad 0 \quad 0
$$ use the

$$
\longrightarrow \frac{x^{2}}{v^{2}}-x^{2}=c^{2}
$$ magic units

\longrightarrow
$x=\frac{\tau}{\sqrt{\frac{1}{v^{2}-1}}}=\frac{5.4 m}{\sqrt{\frac{1}{0.9978^{2}-1}}}$
$=81$ meters
Notice that I dion't use any fancy formulas to solve $1-12 b$. Just solve invariance of the interval!

