Special Relativity HW IZ Solution
7-7(a), 7-9, 7 7-10 (a) and (b), $8-2,8-8$, and 8-9

7-7 (a) How long does a 10^{20} el proton take to get across the galaxy (according to its time)?

The Milky Way Galaxy is 100,000 light-years across, and if something is going lakh speed of fight, we would say. However, for it 100,000 the tors tine to do the crossing. However, for it, can the get tinge is contracted by γ, and we can get

$$
\begin{aligned}
& E=m \gamma^{\prime} \quad \Longrightarrow \gamma^{\prime}=10^{\prime \prime} \\
& C 10^{20} \mathrm{eV} 10^{9} \mathrm{eV} \\
& \frac{100,000 \mathrm{yrs}}{10^{\prime \prime}}=10^{-6} \mathrm{yrs} \approx 30 \text { seconds }
\end{aligned}
$$

7-9 A Sticky Collision
Make some kind of table that allows you to do the accounting. Start with

Before

m	E	p
A	z	6
	$\sqrt{32}$	
	7	9
		$-\sqrt{32}$

After

C| m | E | p |
| :---: | :---: | :---: |
| 15 | 15 | 0 |

I hare filled in what we learned in (a)-(d) in light gray
(a) $E_{c}=15$ follows from $E_{c}=\sqrt{m_{c}^{2}+p_{c}^{2}}$
(6) $P_{A}=\sqrt{6^{2}-2^{2}}=\sqrt{32} \quad P_{B}=-\sqrt{32}$
(c) $\quad E_{B}=15-6=9 \quad P_{B}=-\sqrt{32}$

$$
u_{B}=\sqrt{E_{B}^{2}-p_{B}^{2}}=\sqrt{8 /-32}=\sqrt{49}=7
$$

(c) Greater, and indeed $15>2+7$.

7-10 (a) and (6) Colliding Putty Balls
(a) Were going to be doing accountingapain
Before After

	m	E
	P	
A	m	$w+k$
	m	m
	m	0

m	E	p

The total energy before is $2 m+k$, so that tells us the total energy after, $E_{c}=2 m+k$
(b)

$$
\begin{aligned}
P_{A} & =\sqrt{E_{A}^{2}-m_{A}^{2}}=\sqrt{(m+k)^{2}-m^{2}} \\
& =\sqrt{2 m k+k^{2}}
\end{aligned}
$$

The total momentum before is just P_{A} (because B is at rest), and $P_{A}=\sqrt{Z_{m} K+k^{2}}$, and therefore, $\quad P_{c}=\sqrt{2 m k+k^{2}}$
I didn't ask you to do it, but now you can finish the last missing accounting entry by computing:

$$
\begin{aligned}
m_{c} & =\sqrt{E_{c}^{2}-p_{c}^{2}}=\sqrt{(2 m+k)^{2}-\left(2 m k+k^{2}\right)} \\
& =\sqrt{4 m^{2}+\frac{* m k+k^{2}-2 m k-k^{2}}{2}}=\sqrt{4 m^{2}+2 m k^{\top}}
\end{aligned}
$$

8-2 Relativistic Chemistry
(a) 10 metric tors of hydrogen combines with 80 metric tons of oxygen. That's 10,000 times as much as one kilogram combining, with eight kilograms, so the energy released will be $10,000 \times 10^{8}$ Joules $=10^{12}$ Joules
Assuming the energy escaped it must be because $\frac{\Delta E}{C^{2}}$ of mass disappeared and the amount is

$$
\begin{aligned}
& \frac{10^{12} \mathrm{~J}}{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=\frac{1}{9} \times 10^{-4} \mathrm{~kg} \approx 10^{-5} \mathrm{~kg} \\
& =10 \mathrm{mg}
\end{aligned}
$$

(b) $\frac{10^{-5} \mathrm{~kg}}{10,000 \mathrm{~kg}+80000 \mathrm{~kg}}=\frac{1}{9} \times 10^{-9} \approx 10^{-10}$ The sensitivity is still insufficient by a factor of 100 .
8-8 First we make the accounting table:
Before After

	m	E
	P	P
	0	E
		E
		m

$$
\begin{array}{|c|c|c|}
\hline m & E & P \\
\hline 1.01 m & E+m & E \\
\hline r \sqrt{(E+m)^{2}-E^{2}} & \sqrt{2 m E+m^{2}}
\end{array}
$$

8-8 (cont's)
(a) $1.01 m=\sqrt{Z m E+m^{2}}$

Square both sides $(1.01)^{2}=1.0201$

$$
\begin{gathered}
1.0201 \mathrm{~m}^{2}=2 m E+m^{2} \\
0.0201 \mathrm{~m}=2 m E \\
E=0.01005 \mathrm{~m}
\end{gathered}
$$

(b) $E_{c}=E+m=1.01005 \mathrm{~m}$
E_{c} is indeed a bit larger than 1.01 m and $E=0.01005 \mathrm{~m}$ is indeed a bit larger than 0.01 m (the mass increase of the nucleus). That this is so is because C ends up in motion ($P_{c}=E$ is nonzero). 8-9 Photon "braking"

Before m E P M E_{A} q 	

After

$$
\begin{gathered}
P_{A}=\sqrt{E_{A}^{2}-M^{2}} \\
E_{C}=P_{A} \\
\Rightarrow E_{A}=m+E_{C}=m+P_{A}=m+\sqrt{E_{A}^{2}-M^{2}} \\
\Rightarrow Z m E_{A}=m^{2}+M^{2} \Rightarrow E_{A}^{2} \Rightarrow E_{A}^{2}-2 m E_{A}+m^{2}=E^{2}-M^{2} \\
\left.\Rightarrow m^{2}+M^{2}\right) / 2 m
\end{gathered}
$$

