Third SR Homework-Solutions
Problems 3-8,3-9 and 3-10
Problem 3-8 Eerenkor Radiation
(a)

First, draw jest the particle motion without the light:

Next, add a circle with radius light Δt representing
 the light emitted at time t has gotten to at time $t+\Delta t$

Then add the tangent to the circle $B C$ and a radius (that is perpendicular to the tangent) $A C$. Then focus on just the triangle: 1

Since it is a right triangle with $A=\gamma_{\text {light }} \Delta t$ and $H=V_{\text {particle }} \Delta t$, we have

$$
\cos \phi=\frac{A}{H}=\frac{V_{\text {light }} \Delta t}{V_{\text {particle }} \Delta t}=\frac{V_{\text {light }}}{V_{\text {particle }}}
$$

(b) In Lucite,

$$
\begin{aligned}
V_{\text {light }}=\frac{2}{3}=\frac{2}{3} c & =\frac{2}{3} \cdot 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& =2 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

To have Cerenkov radiation, the particle must be going faster
than Flight. The absolute maximum speed that any particle can g° is (anything just less than $c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$. Using the limiting case of c itself (even though if can never be attained) for vparticle, we have

$$
\cos \phi=\frac{V_{l i g h t}}{c}=\frac{2}{3} \quad \phi=\cos ^{-1} \frac{2}{3}=48^{\circ}
$$

 Cerenkov radiation can happen

(c) In water eight $=0.75=\frac{3}{4}=\cos \phi$

$$
\phi=\cos ^{-1} \frac{3}{4}=41^{\circ}
$$

$$
\text { hd> } \phi \text { near } 41^{\circ}
$$

3-9 Aberration of Starlight
(a) It seems we should analyze in sun frame

$3-9(a)\left(\right.$ contD) $\quad 0=V_{\text {earth }} \Delta t$

$$
A=V_{\text {photon }} \Delta t
$$

$$
\tan \psi=\frac{0}{A}=\frac{V_{\text {earth } \Delta t}^{c \Delta t}}{c t}
$$

$$
=c \Delta t
$$

$=\frac{V_{\text {earth }}}{c}=V_{\text {earth }} \longleftarrow$ in units where $c=1$
We have found the direction the telescope must point - in the Sun's frame!
In the Earth's frame, we get a different answer!
star

$$
\begin{aligned}
& O=V_{\text {earth }} \Delta t \quad H=c \Delta t \\
& \sin \psi=\frac{0}{H}=\frac{V_{\text {earth }} \Delta t}{c \Delta t}=\frac{V_{\text {earth }}}{c}=V_{\text {earth }}
\end{aligned}
$$

Don't we want to know the in units where angle of the telescope in our frame!
So the second formula is the one we want! (b) plus in numbers

$$
\begin{aligned}
\dot{\psi} & =\sin ^{-1} V_{\text {earth }} \\
& =\sin ^{-1} 10^{-4}
\end{aligned}
$$

$$
V_{\text {earth }}=\frac{30 \mathrm{~km} / \mathrm{s}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}
$$

$$
=10^{-4}
$$

The sin of an extremely small angle is just the angle in radians! So

$$
\psi=10^{-4} \text { radians }
$$

3-9(b) (con Ti $)$

$$
\text { multiph by } \frac{180}{\pi}
$$

Convert to degrees, get $\psi=0.0057$ degrees
convert to minutes of arc $\psi=0.34$ minutes ot arc
convert to seconds of arc $\psi=21$ seconds of are
(c) Compare Sun-frame formula with
naive, not the angle we with Earth-frame formula

$$
\begin{aligned}
& \psi=\tan ^{-1} 0.001=0.005729571932^{\circ} \text { my calculator } \\
& \psi=\sin ^{-1} 0.001=0.005729577960^{\circ} \mathrm{K} \quad \begin{array}{l}
\text { displog' } \\
10 \text { sig figs }
\end{array} \\
& \text { The absolute best annular measurement } \\
& \text { are made by the bala satellite }
\end{aligned}
$$ which is the successor to the Hipoarcos which is the successor to the Hipoarcos satellite. If can do angles between stars to about 10^{-11} radians. That's 0.000000000600°. Not good enough for two reasons: (1) it's zox as big as the effect we are looking for, and (z) that's it's best measurement of the angles between stars As far as I know, it cannot measure absolute angles with this precision.

(d) Reevaluate with vrocket $=0.5$

$$
\begin{aligned}
& \psi=\tan ^{-1} 0.5=26.56^{\circ} \longleftarrow \text { Sun-frame } \\
& \psi=\sin ^{-1} 0.5=30^{\circ} \longleftarrow \text { Rocket frame }
\end{aligned}
$$

3-10 (a) Expanding universe
$\Delta \tau=$ proper time between flashes (time in
frame of emitter)

$$
\Delta t_{\text {reception }}=\begin{gathered}
\text { time between flashes (as } \\
\text { observed by receiver) }
\end{gathered}
$$

Space-time diagram in receiver's frame:

The second photon
has to go $V_{\text {fragment }} \Delta t$ further.
squissly line is world time of receiver

$$
\Delta t=\frac{1}{\sqrt{1-V_{\text {fragment }}^{2}}} \Delta \tau
$$

$$
\tau_{\text {we dort }}
$$

have to re-derive this.
So it is received not just Δt later, but $\Delta t+V_{\text {fragment }} \Delta t$ later
Now rewrite this in terms of $\Delta \tau$

$$
\begin{aligned}
& \Delta t_{\text {reception }}=\left(1+V_{\text {fragment }}\right) \frac{1}{\sqrt{1-V_{\text {fragment }}^{2}}} \Delta \tau \\
& \quad=\left(1+V_{\text {fragment }}\right) \frac{1}{\sqrt{\left(1+V_{\text {fragment }}\right)\left(1-V_{\text {fragment }}\right)}} \Delta \tau \\
& =\sqrt{\frac{1+V_{\text {fragment }}}{1-V_{\text {fragment }}} \Delta \tau \frac{1 \text { will discuss the discussion }}{\text { part of }} 3-\xi \text { (a) }} \text { in class. }
\end{aligned}
$$

3-9(b) I will also discuss this discussion question in class
(c) Quasars have been seen with $\frac{\Delta t_{\text {reception }}}{\Delta \tau}=5.9$ What is Vquasar?
(all the ratio y. Solve

$$
y=\sqrt{\frac{1+V_{\text {fragment }}}{1-V_{\text {fragment }}}} \text { for frost squaring each side. }
$$

$$
y^{2}=\frac{1+V_{\text {fragment }}}{1-V_{\text {fragment }}} \Rightarrow y^{2}\left(1-V_{\text {fragment }}\right)^{1+V_{\text {frap }}}=
$$

$$
\overrightarrow{y^{2}}-1=\left(y^{2}+1\right) \text { Vfragment }
$$ $1+$ Vfrasment

$$
\Rightarrow V_{\text {fragment }}=\frac{y^{2}-1}{y^{2}+1}=0.944
$$

Almost 95% the speed of light.

