Special Relativity - Fourth Problem Set 3-11 Addition of Velocities

Before launching in to this problem, it is important to make sure we know the definition of velocity, which is thankfully reasonably simple:

$$
V_{x} \equiv \frac{\Delta x}{\Delta t} \quad\left(\text { contrast with speed } \quad s=\left|V_{x}\right|\right)
$$

If there is motion along more than one axis, there is also

$$
V_{y}=\frac{\Delta y}{\Delta t} \quad \text { and } \quad V_{z}=\frac{\Delta z}{\Delta t} \quad\left(\text { speed } s=\sqrt{V_{x}^{2}+V^{2}+z^{2}}\right)
$$

If the particle is moving steadily (with no acceleration), it doesn't matter how long an elapsed time you use, because the distance traveled in any direction is proportional to the time. However, if the particle is accelerating, the velocity is changing, and you have to use as short a time Δt as possible to get an accurate estimate of the velocity.

We capture the idea of "as short a time as possible" by writing

$$
\left.V_{x} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \quad \text { (and similarly for } \quad r_{y} \text { and } V_{z}\right)
$$

$C_{\text {read }}$ this as "the limit as Δt goes to zero"
(a) We need a quality diagram

Now the pulse is light, and light always goes the speed of light, so it must be that

$$
V_{\text {ret }} \Delta t+L=c \Delta t
$$

In our crafty units, $c=1$, and also, the authors called Δt, $t_{\text {forward, }}$, so we have

$$
\begin{aligned}
& V_{\text {rel }} t_{\text {forward }}+L=t_{\text {forward }} \text { or } \\
& t_{\text {for wand }}=\frac{L}{1-v_{\text {rel }}} \quad \text { we wick is what asked to show }
\end{aligned}
$$

(b)

fred moves forward by an amount $r_{\text {re }}$, backward

Now light goes ctbackward in a time $t_{\text {backward }}$ (and $c=1$) so

$$
f L-V_{\text {rel }} t_{\text {backward }}=c t_{\text {backward }}=t_{\text {tack }}
$$

$$
\text { or } \quad t_{\text {backward }}=\frac{f L}{1+V_{\text {rel }}}
$$

(c) Net distance traveled by light flash is

$$
c t_{\text {forward }}-c t_{\text {backward }}=t_{\text {for word }}-t_{\text {blackwood }}
$$

Meanwhile, the whole time, the bullet has been traveling forward with speed Violet, so it has traveled (forward $\left.+t_{\text {backward }}\right)$ bullet
(c) (cones) By assumption, they meet at
fred, so we must have fred, so we must have

$$
t_{\text {forward }}-t_{\text {backward }}=\left(t_{\text {forward }}+t_{\text {backward }}\right) \text { vbullet }
$$

or

$$
t_{\text {forward }}\left(1-V_{\text {bullet }}\right)=t_{\text {backward }}\left(1+V_{\text {bullet }}\right)
$$

(d) Use parts (a) and (b) to get rid of forward and tbackward in the equation in (c):

$$
\frac{\Delta}{1-v_{\text {rel }}}\left(1-V_{\text {bullet }}\right)=\frac{f c}{1+V_{\text {rel }}}\left(1+V_{\text {bullet }}\right)
$$

Cancel the L 's and solve for f

$$
f=\frac{1-V_{\text {bullet }}}{1-V_{\text {rel }}} \frac{\left(1+V_{\text {re }}\right)}{1+V_{\text {bullet }}}
$$

(e) Repeat all of (a)-(d) but in the space bus frame. In the spacebus frame $V_{r e l}=0$. However V Gullet has some new and different value, so we need a name for it: call it Voullet. So we get a very similar result for f :

$$
f=\frac{1-v_{\text {bullet }}^{\prime \prime}}{1+v_{\text {bullet }}^{\prime \prime}}
$$

(f) Equate the two expressions for f

$$
\frac{1-v_{\text {bullet }}}{1-V_{r e l}} \frac{1+v_{\text {rel }}}{1+v_{\text {bullet }}}=\frac{1-V_{\text {bullet }}}{1+V_{\text {bullet }}^{\prime}}
$$

It seems like we are getting something for nothing! Amazing. Keep going. Solve for bullet

$$
\left(1+V_{\text {bullet }}^{\prime}\right) \underbrace{\frac{1-V_{\text {bullet }}}{1-V_{\text {rel }}} \frac{1+V_{\text {rel }}}{1+V_{\text {bullet }}}}_{\text {or }}=1-V_{\text {bullet }}
$$

$$
\begin{aligned}
& V_{\text {bullet }}^{\prime}=\frac{1-\text { goop }}{1+\text { goop }}=\frac{1-\frac{1-V_{\text {bullet }}}{1-V_{\text {rel }}} \frac{1+V_{\text {rel }}}{1+V_{\text {bullet }}}}{1+\frac{1-V_{\text {bullet }}}{1-V_{\text {rel }}} \frac{1+V_{\text {rel }}}{1+V_{\text {bullet }}}} \\
& =\frac{\left(1-V_{\text {rel }}\right)\left(1+V_{\text {bullet }}\right)-\left(1+V_{\text {rel }}\right)\left(1-V_{\text {bullet }}\right)}{\left(1-V_{\text {rel }}\right)\left(1+V_{\text {bullet }}\right)+\left(1+V_{\text {rel }}\right)\left(1-V_{\text {bullet }}\right)} \\
& =\frac{1-V_{\text {rel }}+V_{\text {bullet }}-V_{\text {rel }} V_{\text {bullet }}-\left(1+V_{\text {rel }}-V_{\text {bullet }}-V_{\text {rel }} V_{\text {bullet }}\right)}{+2\left(V_{\text {bullet }}-V_{\text {rel }}\right)}=\frac{V_{\text {bullet }}-V_{\text {rel }}}{1-V_{\text {bullet }} V_{\text {rel }}}
\end{aligned}
$$

Those rascals solved for Valet, but I solved for V bullet. It is easy to get theirs from mine without more algebra. Just exchange primed with unprimed values

$$
V_{\text {bullet }}=\frac{V_{\text {bullet }}-V_{\text {rél }}}{1-v_{\text {bullet }} V_{\text {reel }}}
$$

But isn't $V_{\text {rel }}=-V_{\text {rel }}$ motion of Earth in busframe
So

$$
V_{\text {bullet }}=\frac{V_{\text {bullet }}+V_{\text {rel }}}{1+V_{\text {bullet }} V_{\text {rel }}}
$$

(g)

$$
\begin{aligned}
\text { (1) } \begin{aligned}
r_{\text {rel }} & =108 \frac{\mathrm{~km}}{\mathrm{hr}}=\frac{108000 \mathrm{~m}}{3600 \mathrm{~s}}=30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& =\frac{3 \frac{\mathrm{~m}}{\mathrm{~s}}}{3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=10^{-7}<\text { in crafty units } \\
V_{\text {bullet }} & =600 \frac{\mathrm{~m}}{\mathrm{~s}}=\frac{600 \frac{\mathrm{~m}}{\mathrm{~s}}}{3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=2 \times 10^{-6} \\
1+V_{\text {rel }} V_{\text {bullet }} & =1+10^{-7} \cdot 2 \times 10^{-6}=1+2 \times 10^{-13}
\end{aligned} .
\end{aligned}
$$

My calculator can't even tell this as different from 1 (if it has 10-12 sig figs). So pretending $\frac{1}{1}=1$, the formula simplifies $1+V_{\text {rel }} V_{\text {bullet }}$
to

$$
V_{\text {bullet }}=V_{\text {bullet }}+V_{\text {rel }}
$$

That's the Newtonian result. Velocities just add.

$$
\begin{aligned}
& V_{\text {rel }}=\frac{3}{4} \\
& V_{\text {sol let }}=3 / 4
\end{aligned}
$$

$$
\begin{array}{r}
\frac{\frac{3}{4}+\frac{3}{4}}{1+\frac{3}{4} \cdot \frac{3}{4}}=\frac{\frac{6}{4}}{1+\frac{9}{16}}=\frac{16 \cdot \frac{6}{4}}{16+9} \tag{2}\\
\quad=\frac{24}{25}=0.96 \quad(\text { not } 1.5!)
\end{array}
$$

(3) Bullet going light-speed

$$
\begin{aligned}
& V_{\text {rel }}=\frac{3}{4} \\
& V_{\text {bullet }}=1
\end{aligned} \frac{1+\frac{3}{4}}{1+1 \cdot \frac{3}{4}}=1 \leftarrow \begin{aligned}
& \text { also goes light-speed } \\
& \text { accooding to } \\
& \text { Earth observer }
\end{aligned}
$$

(4) Bullet going backward at light-speed

$$
\begin{aligned}
& V_{\text {rel }}=\frac{3}{4} \\
& V_{\text {bullet }}^{\prime}=-1 \\
& \qquad V_{\text {bullet }}=\frac{V_{\text {bullet }}+V_{\text {rel }}}{1+V_{\text {bullet }} V_{\text {rel }}}=\frac{-1+\frac{3}{4}}{1+(-1)\left(\frac{3}{4}\right)}=-1
\end{aligned}
$$

I don't usually look for discussion in problem solutions. However, how did we get something for nothing!?
We analyzed the bullet motion in two frames. We got t a result that is caused by both length contraction and time dilation. Our solution (getting Valet in terms of Valet) never had the $\sqrt{1-V_{r e e}^{2}}$ length contraction nor the $\frac{1}{\sqrt{1-V_{r e l}^{2}}}$ time dilation as intermediate results.

3-12 The Michelson -Morley Experiment
(a) Round trip time for plane. Part (a) is non-relativistic reasoning. But to get us anticipating relativity, call the airplane's air speed c. The headwind blowing from B to A has speed V. Doit use relativitistic addition of speeds for this part.
\longleftarrow going against the mind, plane's ground speed with "" "" "c tv"
Assume the distance is d. The plane needs to go a total distance $2 d$.
(relative to the ground) of $2 d$ The first leg of the trip taker $\frac{d}{c-v}$. The second leg takes $\frac{d}{c \times r}$. If the air were still, the time wald be $\frac{2 d}{c}$. Compute the ratio

$$
\begin{aligned}
& \frac{\frac{d}{c-v}+\frac{d}{c+v}}{\frac{2 d}{c}}=\frac{c+v+(c-v)}{(c+v)(c-v) \frac{2}{c}} \\
& =\frac{1}{\left(c^{2}-v^{2}\right) \frac{z}{c}}=\frac{1}{\left(c^{2}-v^{2}\right) \frac{1}{c^{2}}}=\frac{1}{1-v / c^{2}}
\end{aligned}
$$

plane cannot fly straight if it did if would arrive downwind of c
a $\frac{C}{n t}$ So the diagram must look like oops!
 this: ?

$$
\begin{gathered}
c r t \\
?!/ c t \\
A
\end{gathered}
$$

What is the side labeled? Well yes, it is d, but what else is it? Aha, by the Pythagorean theorem it is $\sqrt{c^{2} t^{2}-v^{2} t^{2}}$.
So $d=\sqrt{c^{2} t^{2}-v^{2} t^{2}}=t \sqrt{c^{2}-v^{2}}$
So $\quad t=\frac{d}{\sqrt{c^{2}-v^{2}}}$, and the same on the return trip.
Compute the ratio of the round-tip time perpendicular to the wind to the roundthris, time in still air:

$$
\frac{e \text { in } \frac{d^{5+i l l}}{\sqrt{c^{2}-v^{2}}}}{\neq \frac{d}{c}}=\frac{c}{\sqrt{c^{2}-v^{2}}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

(c) The one going perpendicularly will arrive home first, because $1-\frac{v^{2}}{c^{2}}$ is a number less than 1 and $\sqrt{1-v^{2} / c^{2}}$ is not as much less than 1 . So $\frac{1}{1-v^{2} / c^{2}}$ is more than $\frac{1}{\sqrt{1-v^{2} / c^{2}}}$.
If $\frac{v}{c} \ll 1$, then $\frac{v^{2}}{c^{2}} \ll 1$. We can use the binomial expansion

$$
\text { with } a=1 \quad b=-v^{(} / c^{2} \text { and } n \text { is }\left\{\begin{array}{l}
-1 \text { for } \frac{1}{1-v^{2} / c^{2}} \\
-\frac{1}{2} \text { for } \frac{1}{\sqrt{1-v^{2} / c^{2}}}
\end{array}\right.
$$

So our approximation for the result in part (a) is $1+(-1)\left(-v^{2} / c^{2}\right)$
And our approximation for the result in part (b) is $1+\left(-\frac{1}{2}\right)\left(-v^{2} / c^{2}\right)$

The difference is

$$
=1+\frac{1}{2} v^{2} / c^{2}
$$

$$
\frac{1}{2} r^{2} / c^{2}
$$

The difference in the round-tris travel time is

$$
\frac{2 d}{c}\left(\frac{1}{2} \frac{v^{2}}{c^{2}}\right)
$$

The authors let $L=2 d$, and this is what they call Δt, so
$\Delta t=\frac{L}{c} \frac{l}{2} \frac{v^{2}}{c^{2}}$ and we agree.
(d) The fussbudget has

$$
\begin{aligned}
& \Delta t=4 \mathrm{sec} \\
& L=600 \mathrm{~km} \\
& c=300 \frac{\mathrm{~km}}{\mathrm{hr}}
\end{aligned}
$$

The discrepancy can be explained by a wind going either with or against the slowest planes (and perpendicular to the fastest planes. The speed of the wind is given by

$$
\frac{v^{2}}{c^{2}}=\frac{2 c \Delta t}{L}=\frac{2.300 \frac{\mathrm{~km}}{\mathrm{~h} r} 4 \mathrm{se}}{600 \mathrm{~km}}=\frac{4 \mathrm{sec}}{1 \mathrm{hr}}=\frac{1}{900}
$$

or $\frac{v}{c}=\frac{1}{30}$ or $v=\frac{1}{30} c=\frac{1}{30} 300 \frac{\mathrm{~km}}{\mathrm{hr}}=10 \frac{\mathrm{~km}}{\mathrm{hr}}$
(e) Michelson and Morley have

$$
\begin{aligned}
L & =22 \mathrm{~m} \\
c & =3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
v & =30 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned} \quad\left\{\begin{aligned}
v^{2} / c^{2} \text { is }\left(10^{-4}\right)^{2} \\
=10^{-8}
\end{aligned}\right.
$$

So their Δt is

$$
\begin{aligned}
\Delta t & =\frac{L}{c} \frac{1}{2} \frac{r^{2}}{c^{2}}=\frac{22 \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}} \frac{1}{2} \cdot 10^{-8} \\
& =\frac{11}{3} \times 10^{-16} \mathrm{~s} \approx 3.7 \times 10^{-16} \mathrm{~s} \approx 4 \times 10^{-4} \mathrm{ps}
\end{aligned}
$$

Even if time can be measured to picoseconds, that is still more than 1000 times smaller (0.4 fem toseconds).

$$
\begin{aligned}
& (f) f \lambda=c \text { and } f \equiv \frac{1}{T} \\
& \Rightarrow \frac{\lambda}{T}=c \Rightarrow T=\frac{\lambda}{2}
\end{aligned}
$$

Plug in $\lambda=589 \mathrm{~nm} \approx 600 \times 10^{-9} \mathrm{~m}$ and $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
T \approx \frac{600 \times 10^{-9} \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=200 \times 10^{-17} \mathrm{~s}=2 \times 10^{-15} \mathrm{~s}
$$

They apparently could do 100 times this well. So they could detect $\Delta t=2 \times 10^{-17} \mathrm{~s}$
The Earth's motion results in an expected Δt of $4 \times 10^{-16} 5$, so they are 40 times as sensitive as needed to detect ether flowing at Earth's orbital speed. Since the effect is proportional to v^{2} they actually can detect $v \frac{1}{\sqrt{40}}$ of the orbital speed. They
saw nothing.
\longrightarrow there is no ether drift
\longrightarrow the speed of light is independent of the motion
of the observer.
(g) Discussion: is there a way to evade the conclusion in (f) ?

