Special Relativity Homework 6 Solution
L-7 Transformation of y-velocity
This chapter is all about mechanistic application
of the
Lorentz
transformation. The of the be lorentz tr e finding the coordinates in e process begins by finding the coordinates in one system....
for this problem, make life easy by choosing the initial position of the particle to at ${ }^{9}=0$ be $x^{\prime}=0$ and $y^{\prime}=0$
A time Δt^{\prime} later it is at $x^{\prime}=0$
The mechanistic process,
and $y^{\prime}=V_{y}^{\prime} \Delta t^{\prime}$ continues by equation $\angle-10$ (or sometimes its inverse equation $\langle=11$ if you started with lab frame coordinates)'... of course the initial position
$t^{\prime}=x^{\prime}=y^{\prime}=0$ transforms into $t=x=y=0$
Later, the particle is at

$$
t^{\prime}=\Delta t^{\prime} \quad x^{\prime}=0 \text { and } y^{\prime}=v_{y}^{\prime} \Delta t^{\prime}
$$

find these coordinates in the lab frame:

$$
\begin{aligned}
& t=V_{r e l} \gamma^{\prime} x^{\prime}+\gamma t^{\prime}=V_{\text {rel }} \gamma \cdot 0+\gamma_{\Delta} t^{\prime}=\gamma \Delta t^{\prime} \\
& x=\gamma^{\prime} x^{\prime}+V_{r e l} \gamma^{\prime} t^{\prime}=\gamma \cdot 0+V_{r e l} \gamma^{\prime} \Delta t^{\prime}=V_{r e l} \gamma^{\prime} \Delta t^{\prime} \\
& y=y^{\prime}=V_{y}^{\prime} \Delta t^{\prime}
\end{aligned}
$$

Now let's compute $V_{x}=\frac{\Delta \chi}{\Delta t}=\frac{V_{\text {rel }} \gamma \Delta t^{\prime}-0}{\gamma \Delta t^{\prime}-0}=V_{\text {rel }}$ and

$$
V_{y}=\frac{\Delta y}{\Delta t}=\frac{V_{y}^{\prime} \Delta t^{\prime}-0}{\gamma^{\prime} \Delta t^{\prime}-0}=\frac{V_{y}^{\prime}}{\gamma}=V_{y}^{\prime}\left(1-V_{r e l}^{2}\right)^{1 / 2}
$$

L-10 The tilted meter stick
a. Imp never fond of writing out the "explain why" problems. they are more and it presume yob le to think mes and articulate, do the articulating: Here's my attempt:
If a train is moving to the right in the lab frame and (lightning strikes both ends at the
same time (according train wo in waiver say the las fame)
tie the person sike the happeraid later. say or alter af lightning strike happened later. if the in lightning train strike occurred at the shame in the lab frame later. will say that the right strike happened later.
The case at hand has the two ends of the meter stick moving upward and at the same height in the says lab frame. person the person only the thinks, shays left emerson of the stick is as high as the risufe because you keep measuring person hers ht at a late y time. The person then the at a says the if yam er t, Measure mouthe see that end says at the sample t ' you would see that the
To summarize (perhaps unhelpfully) the person left the rocket sal lab tame, the more
the lab frame clocks are, behind the Youglo frame clocks are, behind.
6. In solving this as suggested by the "Discussinint in (6) how which by is basically to get the answer.
The right edge of the meter stick crosses

$$
t=0 \quad x=\frac{c}{2} \quad y=0
$$

This transforms to (mechanistically using $L-11 a)$

$$
t^{\prime}=-V_{\text {rel }} \gamma^{\prime} \frac{L}{2} \quad x^{\prime}=\gamma^{\prime} \frac{L}{2} \quad y^{\prime}=0
$$

In other words, it occured before $t^{\prime}=0$. How much before? $\Delta t^{\prime}=V_{\text {rel }} \gamma \frac{\Delta}{2}$ Meanwhile from $\angle-7$, we know that 2 the center of the stick which will cross at $t^{\prime}=0$ and is rising is behind by

$$
\left.\Delta y^{\prime}=V_{y}^{\prime} \cdot \Delta t^{\prime}=\gamma V_{y} \cdot V_{\text {rel }} \gamma^{\frac{L}{2}} \quad \quad \text { (also } \Delta x^{\prime}=\gamma \frac{L}{2}\right)
$$

We now have an easy expression for ϕ^{\prime} :

$$
\tan \phi^{\prime}=\frac{\Delta y^{\prime}}{\Delta x^{\prime}}=\frac{\gamma^{\prime} z_{v_{y}} v_{\text {rel }} \frac{4}{2}}{\phi^{\prime} \frac{4}{2}}=\gamma^{\prime} v_{y} v_{\text {rel }}
$$

Or perhaps you prefer $\tan \phi^{\prime}=V_{y}^{\prime} V_{\text {rel }}$
That have an entire and solution to L-10 that does not leverage $L-7$:
center of stick Right end of stick

$$
\begin{aligned}
& \sqrt[y]{v}\left(\frac{t, \quad x=0, y=v_{y} t}{y t^{\prime}=\gamma t, x^{\prime}=-v_{\text {rel }} \gamma t,} \quad t, x=\frac{L}{2}, y=v_{y} t\right. \\
& \stackrel{\text { L }}{\nu} \quad y^{\prime}=v_{y} t \quad l \begin{array}{l}
x^{\prime}=\gamma \frac{c}{2}-v_{\text {rel }} \gamma t \\
y_{y}^{\prime} t
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
y^{\prime}={ }^{2} v_{y} t \\
\gamma t=t^{\prime}+V_{\text {rel }}+\frac{u}{2}
\end{array} \\
& t^{\prime}, x^{\prime}=\gamma \frac{\Delta}{2}-v_{\text {rel }}\left(t^{\prime}+v_{\text {rel }} \gamma \frac{\Delta}{2}\right) \text {, } \\
& y^{\prime}=\frac{v_{y}^{2}}{\gamma}\left(t^{\prime}+v_{\text {rel }} \gamma_{2}^{L}\right)
\end{aligned}
$$

Subtract center coords from right coords $\Delta x^{\prime}=\gamma \frac{L}{2}\left(1-v_{\text {rel }}^{2}\right)=\frac{1}{\mu} \frac{L}{2}, \Delta y^{\prime}=v_{y} V_{r e l} \frac{c}{2} \leqslant$ all the $\mu^{2} \Delta y^{\prime} \gamma_{r} z^{\prime} \Delta y=y_{r e l} \frac{1}{2} \quad t^{\prime}$ cancels!

