Special Relativity HWT
Taylor b wheeler 4-1 (a)-(f)
Let's work symbolically and plug in the numbers
after simplifying.

$$
\begin{aligned}
& t_{0}=2200 A . D \\
& v=0.75 \\
& D=8.7 \text { light-years }=8.7 \text { years } \\
& T=\text { layover time }=7 \text { years }
\end{aligned}
$$

(a) In the Earth frame, at what time does the rocket arrive at sirius?

$$
\begin{aligned}
& t_{1}= t_{0}+\frac{D}{v}=2200 \mathrm{A.D}+\frac{\underbrace{\frac{8.7 \text { years }}{0.75}}_{\frac{4}{3} 8.7=11.6 \text { years }}}{} \\
&=2211.6 \mathrm{A.D} .
\end{aligned}
$$

In' just going to measure all times from 220oAD.

$$
\Rightarrow t_{1}=11.6 \text { years }
$$

(b) $t_{2}=t_{1}+T=11.6+7=18.6$ years
(c) It takes 11.6 years to return just as in (a).

$$
t_{3}=18.6 \text { years }+11.6 \text { years }=30.2 \text { years }
$$

(d) He goes 0.75 of the speed of light, but for James the distance (and time) are Lorentz contracted by

$$
\begin{aligned}
& t_{1} f_{0}-\text { James }=\frac{t_{1}}{8}=t_{1} \sqrt{1-v^{2}}=11.6 \text { years } \cdot \sqrt{1-\frac{9}{16}} \\
& \quad=11.6 \text { years } \cdot \frac{\sqrt{7}}{4}=2.9 \text { years } \cdot \sqrt{7} \approx 7.7 \text { years }
\end{aligned}
$$

4-1 (e) The layover time is T in either frame, because the layover is at rest in the Earth frame, so

$$
\begin{gathered}
t_{2 \text { for James }}=t_{1} \text { fo-James }+T=7.7 \text { years }+7 \text { years } \\
=14.7 \text { years }
\end{gathered}
$$

(f) The added time for this part is the same as was calculated for part (d), so

$$
\begin{aligned}
& t_{3} \text { for James }=t_{2} \text { for James } t t_{1} \text { for James } \\
& \quad=14.7 \text { years }+7.7 \text { years }=22.4 \text { years }
\end{aligned}
$$

Here is $(g),(h)$, and (i) as well
(g)

$$
\begin{gathered}
\text { (g) Dfo-James }=\frac{D}{\gamma}=8.7 \text { light-years } \frac{\sqrt{7}}{4} \\
\approx 5.8 \text { light-years } \\
\text { (h) That's } t_{1} \text { for James }=7.7 \text { years } \quad \tau_{\text {that's } \frac{1}{\gamma}=\sqrt{1-r^{2}}} \begin{array}{l}
\text { and we } \\
\text { previously got that }
\end{array}
\end{gathered}
$$

Earth clocks read $t,=11.6$ years when James gets to Sirius
(i) That's t_{2} for James $=14.7$ years and $t_{2}=18.6$ years
The authors recommend repeating these quite straightforward calculations with various other values.

