
Loops and Orbits

Programming for Aspiring Rocketeers

Jan Term, 2020

Syllabus, revised January 30th, 2020 (added !nal projects links)

To view any/all web resources referenced in this syllabus go to

github.com/observatree/loops-and-orbits

Instructor

Prof. Brian Hill

Brief Course Description

We will write programs to solve some of the most interesting problems in mechanics: free fall

in a uniform gravitational !eld, free fall in Newton's Universal Theory of Gravitation, circular

planetary motion, elliptical planetary motion, and the fuel burns needed for spacecraft

launches. You will need no calculus. Python and Jupyter will do the calculations and

graphing. However, you will need the same preparation (Math 12 or Level 3 Math Placement)

that you would need if you were about to learn calculus. You will be scratching the surface of

the !eld of computational physics that is used for problems as diverse as quantifying sea-

level rise and modeling stellar formation.

https://github.com/observatree/loops-and-orbits/blob/master/final_projects/teams.md
https://github.com/observatree/loops-and-orbits
http://physics.stmarys-ca.edu/faculty/brianhill/index.html


Detailed Course Description

Only the very simplest of physics problems can be described with algebra and geometry

alone. That said, introductory physics is mostly taught in year-long courses using only

algebra, the !rst semester of such a course focuses mostly on mechanics, and there is

already more than enough content in a semester of algebra-based mechanics to prove

daunting for most college students. Furthermore, while daunting, such courses, even when

mastered, are simultaneously deeply dissatisfying, because the unifying principles of physics

required to tackle harder physics problems require the in!nitesimal calculus. Calculus-based

physics is mastered by an even fewer number of college students, and yet is one of the

greatest and most technologically signi!cant legacies of the human mind. Is there an

alternative way to access it? The answer, I and others believe is "yes," (or this syllabus would

not be written), and the means is the !eld of computational physics, which is typically not

taught until at least the fourth semester in an undergraduate's career, despite its fundamental

simplicity and its centrality in 21st century physics.

In this course we will approach mechanics using computational physics instead of calculus.

As noted in the brief course description above, we will tackle many of the same problems

that are tackled in an introductory mechanics course: free fall in a uniform gravitational !eld,

free fall in Newton's Universal Theory of Gravitation, circular orbital motion, elliptical orbital

motion, and !nally we will compute the transfer orbits that are used to do things like insert

satellites into geosynchronous orbit.

Caption: Newton's thought experiment in Newton's Principia (source: Wikimedia)

https://en.wikisource.org/wiki/Page:Newton's_Principia_(1846).djvu/519


We will be able to visualize the solutions to these problems in the same software as we do

the Python coding by relying on Jupyter, a full-featured and mature scienti!c computing

environment, which in turn relies on several mature scienti!c computing and visualization

libraries: numpy, matplotlib, and pandas. You will be developing an intuition for calculus, not

using the in!nitesimal calculus, but by coding in Python to have the computer solve the

problems using small temporal steps, and by studying the results of the calculations as they

are presented graphically in Jupyter.

To motivate what we will be doing on the computer science front, !rst imagine that all sorts of

people that were creative cooks ran all the restaurants, but that most of them actively

avoided aquiring expertise in personnel management and food safety, and furthermore, that

there were no city and county health departments that licensed restaurants.

That's the past, present, and future state of the software industry, except cooking is

programming, personnel management is project management, and food safety is quality

assurance and security. This sounds very bad, but the Wild West state of a"airs is on balance

a good thing for continued rapid innovation in software. The day software (or physics)

becomes a licensed profession is the day it becomes moribund.

To lessen the chance that you will be the cause of the software equivalent of food poisoning,

I will try to teach somewhat more than just programming. Speci!cally, I will have time to

include some software development best practices, including documentation, coding style

for readability and maintainability, unit testing, working with professional software

development tools such as the debugger, and even do a bit of agile project management

during the !nal project phase of the course.

Schedule

Week 1

Physics & Math: The Description of Motions of Objects in 1-D including Coordinates, Units,

Speed, Velocity, and Acceleration.

https://jupyter.org/


Computer Science: Jupyter Notebooks. Documentation in Markdown. Elements of Python

including Expressions, Statements, Variables and Assignments, Types (Lists, Tuples, and

Ranges), Control Flow (While and For loops), and introducing Functions.

Week 2

Physics and Math: The Description of Motions of Objects in 2-D. Projectile Motion. Two-

Dimensional Acceleration. Newton's Universal Theory of Gravitation

Computer Science: Continue Discussion of Functions, Scope and Lifetime of Variables.

Libraries. Testing. Debugging. Dot Notation for Library Functions and Object Methods.

Week 3

Physics, Math, and Applications: Circular and Elliptical Orbits. Modeling Battery Charging.

Modeling Economic Growth. Kepler's Laws. Energy Conservation.

Computer Science: Numpy. Mutability, Assignment, and Performance of Python Lists and

Numpy Arrays. Second Order Runge-Kutta and Midpoint Method Improvememts to Euler and

Euler-Cromer Update Methods. Data Visualization with Pandas.

Week 4

Final Project: Planning, Selection, Work, and Presentations.

Daily Schedule

A Daily Schedule is being retrospectively maintained on GitHub.

https://github.com/observatree/loops-and-orbits%23daily-schedule


Final Projects

To give you a chance to build Jupyter notebooks of your own, and to see what a huge variety

of !elds the methods we are learning can be applied to, the last week (25%) of the class will

be devoted to creating and presenting !nal projects:

Final Project plan

Final Project teams

Prerequisites

It would be pointless and circular if a course that is supposed to help you develop an

understanding of mechanics and calculus required calculus as a prerequisite. However, the

same math that makes one ready for calculus makes one ready for computational physics,

and therefore pre-calculus (Math 12 or Level 3 Math Placement) is a prerequisite.

Grading

15% for each of 4 assignments. 15% for midterm (on 2nd Friday, Jan. 17). 25% for !nal project

with presentation to class.

References

Computational Physics

Numerical Methods for Physics, Alejandro L. Garcia, Pearson, 1994, can be purchased used

on AbeBooks. This course draws from Chapters 2 and 3.

https://github.com/observatree/loops-and-orbits/blob/master/final_projects/plan.md
https://github.com/observatree/loops-and-orbits/blob/master/final_projects/teams.md
https://www.abebooks.com/products/isbn/9780131519862


Computer Science

A pedantic Python reference that is ideal for people who have never done any

programming is Learn Python 3 The Hard Way (LP3THW). By the way, Python 2 is rapidly

becoming obsolete. You should not consider learning it at this point. If you like LP3THW you'll

want to buy the PDF. Enough of it is on the web in HTML to get a start and evaluate whether it

is right for you.

We need an environment where we can put the physics, math, and software together

without spending an inordinate amount of time building up the basics. Our environment is the

Anaconda distribution of Python and Jupyter. Try Jupyter Notebook for Beginners: A Tutorial

by Benjamin Pryke.

Jupyter can be run on-line without installing any software using Binder. That will get us

started extra quickly. By using Binder, we can postpone learning how to run Python and

Jupyter locally until the 2nd week.

If you want to put Anaconda on your own machine, you can. The 2019.10 version installed

on our lab machines was obtained from the Anaconda Distribution web page. It includes

Python 3.7 and Jupyter 6.0.

Software is complex and easily editable. If you start doing signi!cant projects, the

complexity and speed of change make change management essential. The most popular

change management system is git. It is a great leap forward from the systems that preceded

it (CVS and Subversion). If you want to understand git instead of just memorizing the most

common commands, read Travis Swicegood's Pragmatic Guide to Git. After you have used git

for a couple of months, take a deep dive into Git Objects to get much clearer on how git

works.

Python Labs

All twelve Jupyter Notebooks for the course are in the Loops and Orbits Repository on

GitHub. GitHub is cloud hosting for git. You can view the notebooks online. Or you can make a

free GitHub account and fork and clone the entire repository. Or you can follow the procedure

on page 2 of my directions for using the lab iMacs to download the notebooks one at a time.

https://learnpythonthehardway.org/python3
https://www.dataquest.io/blog/jupyter-notebook-tutorial/
https://mybinder.org/
https://www.anaconda.com/distribution/
https://pragprog.com/book/pg_git/pragmatic-guide-to-git
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://github.com/observatree/loops-and-orbits
https://github.com/observatree/loops-and-orbits/blob/master/computer_science/lao-2-1-cs.pdf

