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S0 MOTION OF A PARTICLE IN ONE DIMENSION N

The behavior is shown in Fig. 2.5 for the case of a system displ_aced from e,
librium and released (xo # 0, vo = 0). The reader should draw simiay Curves ;‘;'
T

the case where the system is given a sharp blow at 1 = 0(ie, xo =0, v, 0)

2.10 THE FORCED HARMONIC OSCILLATOR ‘ .
The harmonic oscillator subject to an external applied force is governeqd by Eq

(2.91). In order to simplify the problem of solving this equation, we staye the
following theorem:

Theorem 3. If x(t) is a solution of an inhomogeneous linear equation [eg. Eg.
(2.91)], and x,(1) is a solution of the corresponding homogeneous equation [eg.
Eq. (2.90)]. then x(f) = x{t)+x)(t) is also a solution of the inhomogeneous equation,

This theorem applies whether the coefficients in the equation are constants or
functions of ¢. The proof is a matter of straightforward substitution, and is left to
the reader. In consequence of Theorem 3, if we know the general solution x; of
the homogeneous equation (2.90) (we found this in Section 2.9), then we need find
only one particular solution x; of the inhomogeneous equation (2.91). For we can
add x; to x, and obtain a solution of Eq. (2:91) which contains two arbitrary
constants and is therefore the general solution.

The most important case is that of a sinusoidally oscillating applied force. If
the applied force oscillates with angular frequency @ and amplitude F,, the
equation of motion is

2
x| pdx (2.149

S+b—+kx = F, cos (wt+0,),

a0

where 0, is a constant specifying the phase of the applied force. There are, of cours
many solutions of Eq. (2.148), of which we need find only one. From physicd
considerations, we expect that one solution will be a steady oscillation of the

coordinate x at the same frequency as the applied force:

x = A, cos (wt+0,). @14
The amplitude 4; and phase 6, of the oscillations in x will have to be deteﬂclili:;d
r

by substituting Eq. (2.149) in Eq. (2.148). This procedure is straightfor¥d
leads to the correct answer. The algebra is simpler, however, if we write the
as the real part of a complex function :*

F(t) = Re(F e,

Fo = Foewu.

force

*Note the use of bold face ty %) 16 distimonss ) - heo orrespondi
real quantities (F, x). Pe (F, x) to distinguish complex quantities from ¢
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Thus if we can find a solution x(t) of

d*x  dx

Mgz TGtk = Foe, (2.152)

then, by splitting the equation into real and imaginary parts, we can show* that
the real part of x(t) will satisfy Eq. (2.148). We assume a solution of the form

X = xoeiwt,
so that
X = ia)xoeiw', X = -—wzxoei“”_ (2.153)
Substituting in Eq. (2.152), we solve for Xo:
Fo,/m
Xn =
s S T (2.154)
The solution of Eq. (2.152) is therefore
iwt
x = xgetot — — Fo/me (2.155)

Wi —w?+2iyw
The simplest way to write Eq. (2.155) is to express the denominator in polar form
[Eq. (2.109)]:

2yw

wi—w?+2iyow = [(wi—w?)*+4y*w*]'? exp (i tan~! = 2‘). (2.156)
2_

It is convenient to define the angle

2yw _, wi—w?
— e -1 =t 1 5 2.1
B tan pre—~ o 2.157)
, wZ—w?
sin f§ = [(? _wz())z Y 42?2 (2.158)
2
= (2.159)

cos f = [(wE— ) + 40

This definition is purely a matter of taste, and is arranged so that f = 0 when
® = wyand f > +m/2 as w — + . (See Fig. 2.6.) This definition also makes our

treatment parallel to the customary treatment of Eq. (2.92) in electrical engineering.
If we use Egs. (2.156) and (2.157) and the fact that

i = eil? (2.160)

2

m‘we can show that ...~ throughout this book will mean that the reader who
has followed the discussion to this point should be able to supply th.e pl:OOf hims§lf. (In this
case, put x = x+iy and the result falls out.) Long or tricky proofs will either be given in the
text, or a reference cited, or the reader will be warned that it is not easy.
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we may rewrite ba. (2.155) in the form

F() Jitot o + 5
e T ey 11 - .16
h itn[(n;:",——mi) +4)‘}u) ]” 1)
The complex velogity 18
wly ot 4 8y + 9)
-‘\ = ] x . R T e . T Y W (’ " 2‘
A m[(mé—-—m’)’ —Mr"im’]”i (2.162)
The real position and veloeity are then
v o= Re(x)
= ‘rin “""3'-*“:—1!'*—*1——{ 72 sin ((Uf + 00 4 ﬂ)\ (2163)
m [(wf - +4y°w l
and
X = Re(x)
F‘o M _
37173 cOs ((Uf + 90 + ﬁ). (2-164)

"o [0l ]

This is a particular solution of Eq. (2.148) containing no arbitrary constants, By
Theorem 3 and Eq. (2.133), the general solution (for the underdamped oscillator)

N

xoe Ae M eos (gt + )4 gy - lj Q_/'f’_ s SN (01 g + 2168
- ({02 = o)} 4 gt sin @+ . (2.165)

This solution contains two arbitrary constants A, 0, whose values are determined
by the initial values xo. vy at ¢ = 0. The first term dies out exponentially in time
and is called the transient. The sccond term is called the steady state, und oscillates
with constunt amplitude, The transient depends on the initial conditions, The
:S‘lt?&l'dy state which remains after the (ransient dies away is independent of the
nplml conditions. (When there is no dumping, y = 0, the “trunsient” does not
die away, but we may still define it us that part of the solution which has the
E::én;ul [requency my = my; the term “transient™ is not very descriptive In (his

In the steady state, the rate at whic |
applied force is hich work is done on the oscillator by the

XF(t) = {g e
m [(w? = wi)? Faply]in con (wt + (y) cos (wt + g+ ff)
F§ wcos feow® wr+0y)  F3 el ,
- 0 VOB OB (M) FE wwin f sin Aewt + ) »
" [(w:l - uh’ylr =) 473(1;7] mn= m EWW3%~W ' (2,]06]
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Fig. 26 Power and phase of forced harmoai osallations.

The last term on the right is zero on the average. while the average value of
cos? (wt +6,) over a complete cycle 1 1 Hence the average power delivered by
the applied force 1s

- FicosB @
P av (xF (t)>n!' = Oh [(ml _%1)1 s 432@3 [ By (‘2‘167)

or
Pmr o %Fﬁiu cos ﬁ‘ (2'168)

where x,, is the maximum value of x. A similar relation holds for power delivered

to an electrical circuit. The factor cos B is called the power factor. In the electncal

case, § is the phase angle between the current and the applied emf. Using formuia
(2.162) for cos f, we can rewrite Eq. (2.167):

_Fa o’

P = @ —od 470

It is easy to show that in the steady state power is supplied to the oscillator at the
same average rate that power is being dissipated by friction, as of course it must
be. The power P,, has a maximum for @ = ex. In Fig. 26, the power P,, (in
arbitrary units) and the phase fi of steady-state forced osallations are plotied
a@hﬁmfortwovalu&sdr.ThGhavymmhtmﬂm;meﬁgm

curves are for greater dmnm Formula (2.]@) can be W somewhal m

(2169




PROBLEMS 69

Find a pa_rticular solutipn by expressing F as the real part of a complex exponential function
and looking for a solution for x having the same exponential time dependence.

47. An un.damped harmonic oscillator (b = 0), initially at rest, is subject beginning at t = 0
to an applied force F, sin wt. Find the motion x(t).

48. An undamped harmonic oscillator (b=

0) is subject to an applied force F, cos wt.
Show that if w = @,

there is no steady-state solution. Find a particular solution by starting
with a solution for @ = w,+¢, and passing to the limit ¢ — 0. [Hint: If you start with the
steady-state solution and let ¢ — 0, it will blow up. Try starting with a solution which fits the
initial condition x, = 0, so that it cannot blow upatt =0.]

49. A critically damped harmonic oscillator with mass m and spring constant k, is subject
to an applied force F, cos wt. If, at t = 0, x = Xo and v = v,, what is x(t)?

50. A force F cos (wt + 6,) acts on a damped harmonic oscillator beginning at t = 0.
a) What must be the initial values of x and v in order that there be no transient?

b) Ifinstead xo = vy = 0]find the amplitude 4 and phase 0 of the transient in terms of F 0> 0o

Fig. 2.11

51. A mass mis attached to a spring with force constant k, relaxed length [, as shown in Fig. 2.11.
The left end of the spring is- not fixed, but is instead made to oscillate with amplitude q,
frequency o, so that X = a sin wt, where X is measured from a fixed re_:ference point 0. Write
the equation of motion, and show that it is equivalent to Eq. (2. 1‘48.) with an applied force ka
sin wt, if the friction is given by Eq. (2.31). Show that, if the frlc_ne?n comes instead f_rom_ a
dashpot connected between the ends of the spring, so that the frictional force is — b(x — X)),
then the equation of motion has an additional applied force wba cos wt.

52. An automobile weighing one ton (2000 Ib, in-cluding passengers but excluding wheels
and everything else below the springs) settles one inch closgr to the 1:oad for every 200 lb' of
passengers. It is driven at 20 mph over a washboard road leth sn.lusmdal undulations having
a distance between bumps of 1 ft and an amplitude of 2 in (height of bumps a.nd depth. of
holes from mean road level). Find the amplitude of oscillation of t.he automobile, assuming
it moves vertically as a simple harmonic oscillator without damping (no shoc!c absorbe'rs).
(Neglect the mass of wheels and springs.) If shock absorbers are added to provide damping,
is the ride better or worse? (Use the result of Problem 51.)

.
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