Homework 15 due Monday, 11/4 is to complete this handout (see all the places marked "Your turn"), and also do Townsend 5.1 and 5.6.

	Past fine:		product basis
are: /1),0/		We are	just going ber VHOSE
/1>, & / /1>, & /			177
11720 1	14/2		/3> /4>
The sir	nplest Har	miltonian of	one can of interaction of
$+\omega 0$ 57 $H=$	$\frac{2A}{4^{2}} \stackrel{?}{S} \stackrel{?}{S}$	2	Townsend 5.9
The 2	and the venience an	d to z are	just in there that A has
In the	direct	product	basis S, . Sz
cen be c	Northern SIX + SIY	&Idz. Id	5,852× 1,8524
	+5,12	@Idz. Id	f, QSZZ

but that simplifies I you have to know the that's as far as we got on 10/30 we want to find Six and Siy
the Z-basis (c raising and lowering opera $S_{14} = S_{1x} + i S_{1y}$ $S_{1-} = S_{1x} - i S_{1y}$ 52+ = SZX+75 Find an expression for #= 24 5 that only uses S1+, S1-, S12, S2+,

YOUR TURN AGAIN Find <1/4/1> YOUR TURN AGAIN <1/4/2), <1/4/3), <1/4/4), and <2/4/1) are all o.

Find <2/4/2) YOUR TURN AGAIN)
FIND (2/H/3)

If things have gone well, you now know T of the entires of (i/H/j) and the matrix looks like This is Townsend 5.14.

Your TURN AGAIN what are the eigenvectors and eigenvalues of

|a| |a| Use the usual H b = E b nethed. This will of a determinant of a 4x4 matrix. If will be a 4th order polynomial with four roots and for eigenvectors.