Problem Set 1 for Tuesday Sept. 14
Gather together the four theory handouts that hare been
created and distributed. You will created and distributed. You will need them. Also get clean $81 / 2 \times 11$ paper, a pencil, and an eraser. High-quality work begins

These are directions not with assembling good tools, and suggestions taking pride in using them well.)

1. You are a 72 kg astronaut who has just landed on the Moon. The acceleration of gravity is $1.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ You carefully lower yourself 0.50 m from the bottom rung of the lander's ladder to the surface.
If you had instead jumped from the bottom rung to the surface, how much energy would be released?
Carry through units carefully.
convert to common and More convenient units. Feel free $\{$ directions to round to two sig figs - or not.)
2. A 50 g serving of Kitkat wafer bars has $259 \underbrace{\mathrm{kcal}}=259,000 \mathrm{cal}$ of energy energy unit used by nutritionists energy unit used by, chemists in the 1800 's a. 1 cal $\equiv 4.184 \mathrm{~J} \longleftarrow$ exact, using tod say's deft of cal Convert the energy in 50 g of Kitkats to Joules. Round to three sig figs. (I chose there numbers to make the final result tidy)
3. You are hiking and you have 50g of Kitkats every hour. If your body was perfectly efficient at turning Kitkats into muscular work, how much power could your muscles put out? HiNT: You will need to convert hours to seconds to get to standard units. NOTE: The human body is far from perfectly efficient. Most humans can only do work at a rate of about " 100 W . 3 a. "coulombs of charge falls" through an electrical potential and releases 150 Joules of energy. what is the electrical potential?
b. zoA of current "falls" through an electrical potential of 12 V . What is the power being released?
4. A proton has charge of $1.6 \times 10^{-19} \mathrm{C}$. The LHC (Large Hadron Collider) at CERN has a beam current of 0.58 A . How many protons pass by the particle detector in 1 second.
5. This is a more realistic I-V curve for a fresh $9 V$ alkaline battery:

Model a 9V battery as $\begin{array}{rl:c}\text { follows: } & \ldots \\ V_{B} & \frac{I}{T} \\ R_{I} & \}_{1}\end{array}$
The battery modeled as perfect voltage source with value V_{B}, in series with a resistor of value R_{I}.
From the y-intercept of the graph (where no current is flowing), and the slope of the graph, determine V_{B} and R_{I}
sa. Use the methods I used when deriving the formula for resistors in series to determine V_{T} and V_{K} in the following schematic:

56. Your answers for V_{J} and V_{k} involved R_{1}, R_{2}, R_{3} and V_{B}
Plug in $K_{B}=10 \mathrm{~V}$
$R_{1}=8002 \mathrm{~s}$ and $R_{2}=R_{3}=1002 \mathrm{~b}$ and get V_{J} and V_{k}.
NOTE: Such a circuit is called a voltage divider.
Ga. Use the methods I used when deriving the formula for resistors in parallel to find I in this circuit.

66. Rearrange your equation for I to solve for $\frac{V_{B}}{T}$. Note: Your answer. $6 L$ is the formula for the resistance of three resistors in parallel

