NOTES FOR SEPTEMBER 10
Series and Parallel Resistors
first, Let's have a summary of the types of quantifies so far introduced, and then we will derive two new results.

| Quantity | Usug' Variable <br> Name | Standard <br> Unit | Abriftion |
| :---: | :---: | :---: | :---: |
| Charge | $Q$ | Coulomb | $G$ |
| Current | $I$ | Ampere | $A$ |
| Energy | $E$ | Joule | $J$ |
| Power | $P$ | Watt | $W$ |
| Electricallial | $V$ | Volt | $V$ |
| Resistance | $R$ | Ohm | $Z G$ |

Charge, like mass, cannot be created or destroyed. Because like charger repel, charge never piles up. In other words, all amos $\bar{t}$ circuit elements are neutral, even batteries. Resistors have a linear I-V curve. The resistance of a resistor, $R$, is the slope of the line, so

$$
V=I R
$$

Before leaving the summary, let's also get all the jargon Ion the table:

Tern
current
Electrical

Power
Ampere

Synonyms or Jargon
Sometimes called "amperage"
S usually just "potential"
V very of fen called "voltage"
often called "wattage"
often shortened to "Amp"
fundamental formulas

electrical


Definition of qurrent
The formula $V=I R$ is extremely important, but it is a property of an ideal resistor. Real resistors are so close to ideal, this formula is known as "ohm's Law." That's the summary. Onward to two new results....

1. Resistors in Series

Consider this circuit:
Or equivalently:


If $V_{B}$ (the voltage of the battery) and $R_{1}$ and $R_{2}$ are known, what is I?
The trick is to label one more unknown:
 $V_{J}$ is the voltage on the wire connecting the two resistors. The voltage drop across $R_{1}$ is $V_{B}-V_{J}$ and this must be IR, by Chi
The voltage drop across $R_{2}$ is $V_{J}-0=V_{J}$ and this must be $I R_{2}$ (again by Ohm's Law)

$$
\begin{aligned}
& \left.V_{J}=I R_{2}\right\} V_{B}-K_{K}+K_{K}=I R_{1}+I R_{2} \\
& V_{B}=I\left(R_{1}+R_{2}\right) \leftarrow \quad \begin{array}{c}
\text { Resistors in series add } \\
V=I R_{\text {midi }} \\
R_{\text {Si,is }}=R_{1}+R_{2}
\end{array}
\end{aligned}
$$

2. Resistors in Parallel

Consider this circuit: Or equivalently: $I \downarrow_{\emptyset} V_{B}$


If $V_{B}, R_{1}$, and $R_{2}$ are known, what is $I_{!}$? Again the trick is to label some unknowns: ईे

$I_{1}$ is the current flowing through $R$,
$I_{2}$ is the current flowing through $R_{2}$
The total current going from the battery to ground divides up and goes through the two resistors:

$$
I=I_{1}+I_{2}
$$

By Ohm's Law for $R_{1}$ : $V_{B}=I_{1} R_{1}$, or $I_{1}=\frac{V_{B}}{R_{1}}$
$B_{3}$ On's Law for $R_{2}: \quad V_{B}=I_{2} R_{2}$ or $I_{2}=\frac{V_{B}}{R_{2}}$
So $I=\frac{V_{B}}{R_{1}}+\frac{V_{B}}{R_{2}}=V_{B}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
Or $V_{B}= \pm R_{R_{\text {merle r }}}$ where $R_{\text {Panel }}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

